/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o a!6220!6220adx : [o] --> o a!6220!6220head : [o] --> o a!6220!6220incr : [o] --> o a!6220!6220nats : [] --> o a!6220!6220tail : [o] --> o a!6220!6220zeros : [] --> o adx : [o] --> o cons : [o * o] --> o head : [o] --> o incr : [o] --> o mark : [o] --> o nats : [] --> o nil : [] --> o s : [o] --> o tail : [o] --> o zeros : [] --> o a!6220!6220incr(nil) => nil a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) a!6220!6220adx(nil) => nil a!6220!6220adx(cons(X, Y)) => a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220nats => a!6220!6220adx(a!6220!6220zeros) a!6220!6220zeros => cons(0, zeros) a!6220!6220head(cons(X, Y)) => mark(X) a!6220!6220tail(cons(X, Y)) => mark(Y) mark(incr(X)) => a!6220!6220incr(mark(X)) mark(adx(X)) => a!6220!6220adx(mark(X)) mark(nats) => a!6220!6220nats mark(zeros) => a!6220!6220zeros mark(head(X)) => a!6220!6220head(mark(X)) mark(tail(X)) => a!6220!6220tail(mark(X)) mark(nil) => nil mark(cons(X, Y)) => cons(mark(X), Y) mark(s(X)) => s(mark(X)) mark(0) => 0 a!6220!6220incr(X) => incr(X) a!6220!6220adx(X) => adx(X) a!6220!6220nats => nats a!6220!6220zeros => zeros a!6220!6220head(X) => head(X) a!6220!6220tail(X) => tail(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(nil) >? nil a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220adx(nil) >? nil a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220nats >? a!6220!6220adx(a!6220!6220zeros) a!6220!6220zeros >? cons(0, zeros) a!6220!6220head(cons(X, Y)) >? mark(X) a!6220!6220tail(cons(X, Y)) >? mark(Y) mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(nats) >? a!6220!6220nats mark(zeros) >? a!6220!6220zeros mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(nil) >? nil mark(cons(X, Y)) >? cons(mark(X), Y) mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220incr(X) >? incr(X) a!6220!6220adx(X) >? adx(X) a!6220!6220nats >? nats a!6220!6220zeros >? zeros a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220head = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220tail = \y0.1 + y0 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.2y0 + 2y1 head = \y0.y0 incr = \y0.y0 mark = \y0.y0 nats = 0 nil = 0 s = \y0.y0 tail = \y0.1 + y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220adx(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220incr(cons(mark(_x0), adx(_x1)))]] [[a!6220!6220nats]] = 0 >= 0 = [[a!6220!6220adx(a!6220!6220zeros)]] [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220head(cons(_x0, _x1))]] = 2x0 + 2x1 >= x0 = [[mark(_x0)]] [[a!6220!6220tail(cons(_x0, _x1))]] = 1 + 2x0 + 2x1 > x1 = [[mark(_x1)]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(adx(_x0))]] = x0 >= x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(head(_x0))]] = x0 >= x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = 1 + x0 >= 1 + x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220adx(_x0)]] = x0 >= x0 = [[adx(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220head(_x0)]] = x0 >= x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = 1 + x0 >= 1 + x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220tail(cons(X, Y)) => mark(Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(nil) >? nil a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220adx(nil) >? nil a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220nats >? a!6220!6220adx(a!6220!6220zeros) a!6220!6220zeros >? cons(0, zeros) a!6220!6220head(cons(X, Y)) >? mark(X) mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(nats) >? a!6220!6220nats mark(zeros) >? a!6220!6220zeros mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(nil) >? nil mark(cons(X, Y)) >? cons(mark(X), Y) mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220incr(X) >? incr(X) a!6220!6220adx(X) >? adx(X) a!6220!6220nats >? nats a!6220!6220zeros >? zeros a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220head = \y0.2y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 2 a!6220!6220tail = \y0.y0 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.2y0 + 2y1 head = \y0.2y0 incr = \y0.y0 mark = \y0.y0 nats = 2 nil = 0 s = \y0.y0 tail = \y0.y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220adx(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220incr(cons(mark(_x0), adx(_x1)))]] [[a!6220!6220nats]] = 2 > 0 = [[a!6220!6220adx(a!6220!6220zeros)]] [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220head(cons(_x0, _x1))]] = 4x0 + 4x1 >= x0 = [[mark(_x0)]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(adx(_x0))]] = x0 >= x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(nats)]] = 2 >= 2 = [[a!6220!6220nats]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(head(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = x0 >= x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220adx(_x0)]] = x0 >= x0 = [[adx(_x0)]] [[a!6220!6220nats]] = 2 >= 2 = [[nats]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220head(_x0)]] = 2x0 >= 2x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220nats => a!6220!6220adx(a!6220!6220zeros) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(nil) >? nil a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220adx(nil) >? nil a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220zeros >? cons(0, zeros) a!6220!6220head(cons(X, Y)) >? mark(X) mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(nats) >? a!6220!6220nats mark(zeros) >? a!6220!6220zeros mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(nil) >? nil mark(cons(X, Y)) >? cons(mark(X), Y) mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220incr(X) >? incr(X) a!6220!6220adx(X) >? adx(X) a!6220!6220nats >? nats a!6220!6220zeros >? zeros a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220head = \y0.2 + y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220tail = \y0.y0 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.2y0 + 2y1 head = \y0.2 + y0 incr = \y0.y0 mark = \y0.y0 nats = 0 nil = 0 s = \y0.y0 tail = \y0.y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220adx(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220incr(cons(mark(_x0), adx(_x1)))]] [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220head(cons(_x0, _x1))]] = 2 + 2x0 + 2x1 > x0 = [[mark(_x0)]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(adx(_x0))]] = x0 >= x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(head(_x0))]] = 2 + x0 >= 2 + x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = x0 >= x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220adx(_x0)]] = x0 >= x0 = [[adx(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220head(_x0)]] = 2 + x0 >= 2 + x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220head(cons(X, Y)) => mark(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(nil) >? nil a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220adx(nil) >? nil a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220zeros >? cons(0, zeros) mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(nats) >? a!6220!6220nats mark(zeros) >? a!6220!6220zeros mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(nil) >? nil mark(cons(X, Y)) >? cons(mark(X), Y) mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220incr(X) >? incr(X) a!6220!6220adx(X) >? adx(X) a!6220!6220nats >? nats a!6220!6220zeros >? zeros a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.2y0 a!6220!6220head = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220tail = \y0.2y0 a!6220!6220zeros = 0 adx = \y0.2y0 cons = \y0y1.y1 + 2y0 head = \y0.y0 incr = \y0.y0 mark = \y0.y0 nats = 0 nil = 1 s = \y0.y0 tail = \y0.2y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(nil)]] = 1 >= 1 = [[nil]] [[a!6220!6220incr(cons(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220adx(nil)]] = 2 > 1 = [[nil]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x0 + 2x1 = [[a!6220!6220incr(cons(mark(_x0), adx(_x1)))]] [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(adx(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(head(_x0))]] = x0 >= x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(nil)]] = 1 >= 1 = [[nil]] [[mark(cons(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220adx(_x0)]] = 2x0 >= 2x0 = [[adx(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220head(_x0)]] = x0 >= x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = 2x0 >= 2x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220adx(nil) => nil We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] a!6220!6220incr#(cons(X, Y)) =#> mark#(X) 1] a!6220!6220adx#(cons(X, Y)) =#> a!6220!6220incr#(cons(mark(X), adx(Y))) 2] a!6220!6220adx#(cons(X, Y)) =#> mark#(X) 3] mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) 4] mark#(incr(X)) =#> mark#(X) 5] mark#(adx(X)) =#> a!6220!6220adx#(mark(X)) 6] mark#(adx(X)) =#> mark#(X) 7] mark#(nats) =#> a!6220!6220nats# 8] mark#(zeros) =#> a!6220!6220zeros# 9] mark#(head(X)) =#> a!6220!6220head#(mark(X)) 10] mark#(head(X)) =#> mark#(X) 11] mark#(tail(X)) =#> a!6220!6220tail#(mark(X)) 12] mark#(tail(X)) =#> mark#(X) 13] mark#(cons(X, Y)) =#> mark#(X) 14] mark#(s(X)) =#> mark#(X) Rules R_0: a!6220!6220incr(nil) => nil a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) a!6220!6220adx(cons(X, Y)) => a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220zeros => cons(0, zeros) mark(incr(X)) => a!6220!6220incr(mark(X)) mark(adx(X)) => a!6220!6220adx(mark(X)) mark(nats) => a!6220!6220nats mark(zeros) => a!6220!6220zeros mark(head(X)) => a!6220!6220head(mark(X)) mark(tail(X)) => a!6220!6220tail(mark(X)) mark(nil) => nil mark(cons(X, Y)) => cons(mark(X), Y) mark(s(X)) => s(mark(X)) mark(0) => 0 a!6220!6220incr(X) => incr(X) a!6220!6220adx(X) => adx(X) a!6220!6220nats => nats a!6220!6220zeros => zeros a!6220!6220head(X) => head(X) a!6220!6220tail(X) => tail(X) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * 1 : 0 * 2 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * 3 : 0 * 4 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * 5 : 1, 2 * 6 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * 7 : * 8 : * 9 : * 10 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * 11 : * 12 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * 13 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 * 14 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 This graph has the following strongly connected components: P_1: a!6220!6220incr#(cons(X, Y)) =#> mark#(X) a!6220!6220adx#(cons(X, Y)) =#> a!6220!6220incr#(cons(mark(X), adx(Y))) a!6220!6220adx#(cons(X, Y)) =#> mark#(X) mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) mark#(incr(X)) =#> mark#(X) mark#(adx(X)) =#> a!6220!6220adx#(mark(X)) mark#(adx(X)) =#> mark#(X) mark#(head(X)) =#> mark#(X) mark#(tail(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). The formative rules of (P_1, R_0) are R_1 ::= a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) a!6220!6220adx(cons(X, Y)) => a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220zeros => cons(0, zeros) mark(incr(X)) => a!6220!6220incr(mark(X)) mark(adx(X)) => a!6220!6220adx(mark(X)) mark(zeros) => a!6220!6220zeros mark(head(X)) => a!6220!6220head(mark(X)) mark(tail(X)) => a!6220!6220tail(mark(X)) mark(cons(X, Y)) => cons(mark(X), Y) mark(s(X)) => s(mark(X)) a!6220!6220incr(X) => incr(X) a!6220!6220adx(X) => adx(X) a!6220!6220zeros => zeros a!6220!6220head(X) => head(X) a!6220!6220tail(X) => tail(X) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220incr#(cons(X, Y)) >? mark#(X) a!6220!6220adx#(cons(X, Y)) >? a!6220!6220incr#(cons(mark(X), adx(Y))) a!6220!6220adx#(cons(X, Y)) >? mark#(X) mark#(incr(X)) >? a!6220!6220incr#(mark(X)) mark#(incr(X)) >? mark#(X) mark#(adx(X)) >? a!6220!6220adx#(mark(X)) mark#(adx(X)) >? mark#(X) mark#(head(X)) >? mark#(X) mark#(tail(X)) >? mark#(X) mark#(cons(X, Y)) >? mark#(X) mark#(s(X)) >? mark#(X) a!6220!6220incr(cons(X, Y)) >= cons(s(mark(X)), incr(Y)) a!6220!6220adx(cons(X, Y)) >= a!6220!6220incr(cons(mark(X), adx(Y))) a!6220!6220zeros >= cons(0, zeros) mark(incr(X)) >= a!6220!6220incr(mark(X)) mark(adx(X)) >= a!6220!6220adx(mark(X)) mark(zeros) >= a!6220!6220zeros mark(head(X)) >= a!6220!6220head(mark(X)) mark(tail(X)) >= a!6220!6220tail(mark(X)) mark(cons(X, Y)) >= cons(mark(X), Y) mark(s(X)) >= s(mark(X)) a!6220!6220incr(X) >= incr(X) a!6220!6220adx(X) >= adx(X) a!6220!6220zeros >= zeros a!6220!6220head(X) >= head(X) a!6220!6220tail(X) >= tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220adx# = \y0.y0 a!6220!6220head = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220incr# = \y0.y0 a!6220!6220tail = \y0.2y0 a!6220!6220zeros = 2 adx = \y0.y0 cons = \y0y1.2 + 2y0 head = \y0.y0 incr = \y0.y0 mark = \y0.y0 mark# = \y0.1 + 2y0 s = \y0.y0 tail = \y0.2y0 zeros = 2 Using this interpretation, the requirements translate to: [[a!6220!6220incr#(cons(_x0, _x1))]] = 2 + 2x0 > 1 + 2x0 = [[mark#(_x0)]] [[a!6220!6220adx#(cons(_x0, _x1))]] = 2 + 2x0 >= 2 + 2x0 = [[a!6220!6220incr#(cons(mark(_x0), adx(_x1)))]] [[a!6220!6220adx#(cons(_x0, _x1))]] = 2 + 2x0 > 1 + 2x0 = [[mark#(_x0)]] [[mark#(incr(_x0))]] = 1 + 2x0 > x0 = [[a!6220!6220incr#(mark(_x0))]] [[mark#(incr(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[mark#(_x0)]] [[mark#(adx(_x0))]] = 1 + 2x0 > x0 = [[a!6220!6220adx#(mark(_x0))]] [[mark#(adx(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[mark#(_x0)]] [[mark#(head(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[mark#(_x0)]] [[mark#(tail(_x0))]] = 1 + 4x0 >= 1 + 2x0 = [[mark#(_x0)]] [[mark#(cons(_x0, _x1))]] = 5 + 4x0 > 1 + 2x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[mark#(_x0)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2 + 2x0 >= 2 + 2x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2 + 2x0 >= 2 + 2x0 = [[a!6220!6220incr(cons(mark(_x0), adx(_x1)))]] [[a!6220!6220zeros]] = 2 >= 2 = [[cons(0, zeros)]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(adx(_x0))]] = x0 >= x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 2 >= 2 = [[a!6220!6220zeros]] [[mark(head(_x0))]] = x0 >= x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2 + 2x0 >= 2 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220adx(_x0)]] = x0 >= x0 = [[adx(_x0)]] [[a!6220!6220zeros]] = 2 >= 2 = [[zeros]] [[a!6220!6220head(_x0)]] = x0 >= x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = 2x0 >= 2x0 = [[tail(_x0)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: a!6220!6220adx#(cons(X, Y)) =#> a!6220!6220incr#(cons(mark(X), adx(Y))) mark#(incr(X)) =#> mark#(X) mark#(adx(X)) =#> mark#(X) mark#(head(X)) =#> mark#(X) mark#(tail(X)) =#> mark#(X) mark#(s(X)) =#> mark#(X) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 1, 2, 3, 4, 5 * 2 : 1, 2, 3, 4, 5 * 3 : 1, 2, 3, 4, 5 * 4 : 1, 2, 3, 4, 5 * 5 : 1, 2, 3, 4, 5 This graph has the following strongly connected components: P_3: mark#(incr(X)) =#> mark#(X) mark#(adx(X)) =#> mark#(X) mark#(head(X)) =#> mark#(X) mark#(tail(X)) =#> mark#(X) mark#(s(X)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_2, R_1, m, f) by (P_3, R_1, m, f). Thus, the original system is terminating if (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(mark#(incr(X))) = incr(X) |> X = nu(mark#(X)) nu(mark#(adx(X))) = adx(X) |> X = nu(mark#(X)) nu(mark#(head(X))) = head(X) |> X = nu(mark#(X)) nu(mark#(tail(X))) = tail(X) |> X = nu(mark#(X)) nu(mark#(s(X))) = s(X) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.