/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 6 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) QDPOrderProof [EQUIVALENT, 6 ms] (7) QDP (8) DependencyGraphProof [EQUIVALENT, 0 ms] (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) first(0, Z) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) sel(0, cons(X, Z)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z)) SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) first(0, Z) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) sel(0, cons(X, Z)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) first(0, Z) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) sel(0, cons(X, Z)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVATE(x1) = x1 n__from(x1) = x1 n__s(x1) = x1 n__first(x1, x2) = n__first(x1, x2) FIRST(x1, x2) = x2 activate(x1) = activate(x1) cons(x1, x2) = x2 from(x1) = x1 s(x1) = x1 first(x1, x2) = first(x1, x2) 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:activate_1 > 0 activate_1 > first_2 > n__first_2 activate_1 > nil and weight map: 0=2 first_2=2 activate_1=0 n__first_2=2 nil=4 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) s(X) -> n__s(X) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) first(0, Z) -> nil first(X1, X2) -> n__first(X1, X2) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) first(0, Z) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) sel(0, cons(X, Z)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__from(X)) -> ACTIVATE(X) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) first(0, Z) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) sel(0, cons(X, Z)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__from(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 *ACTIVATE(n__from(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z)) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) first(0, Z) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) sel(0, cons(X, Z)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z)) The graph contains the following edges 1 > 1 ---------------------------------------- (16) YES