/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) QDPOrderProof [EQUIVALENT, 99 ms] (37) QDP (38) QDPOrderProof [EQUIVALENT, 31 ms] (39) QDP (40) QDPOrderProof [EQUIVALENT, 23 ms] (41) QDP (42) DependencyGraphProof [EQUIVALENT, 0 ms] (43) QDP (44) UsableRulesProof [EQUIVALENT, 0 ms] (45) QDP (46) QDPSizeChangeProof [EQUIVALENT, 0 ms] (47) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(fst(0, Z)) -> MARK(nil) ACTIVE(fst(s(X), cons(Y, Z))) -> MARK(cons(Y, fst(X, Z))) ACTIVE(fst(s(X), cons(Y, Z))) -> CONS(Y, fst(X, Z)) ACTIVE(fst(s(X), cons(Y, Z))) -> FST(X, Z) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(add(s(X), Y)) -> S(add(X, Y)) ACTIVE(add(s(X), Y)) -> ADD(X, Y) ACTIVE(len(nil)) -> MARK(0) ACTIVE(len(cons(X, Z))) -> MARK(s(len(Z))) ACTIVE(len(cons(X, Z))) -> S(len(Z)) ACTIVE(len(cons(X, Z))) -> LEN(Z) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) MARK(fst(X1, X2)) -> FST(mark(X1), mark(X2)) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(0) -> ACTIVE(0) MARK(nil) -> ACTIVE(nil) MARK(s(X)) -> ACTIVE(s(X)) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> ACTIVE(len(mark(X))) MARK(len(X)) -> LEN(mark(X)) MARK(len(X)) -> MARK(X) FST(mark(X1), X2) -> FST(X1, X2) FST(X1, mark(X2)) -> FST(X1, X2) FST(active(X1), X2) -> FST(X1, X2) FST(X1, active(X2)) -> FST(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) LEN(mark(X)) -> LEN(X) LEN(active(X)) -> LEN(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 18 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(active(X)) -> LEN(X) LEN(mark(X)) -> LEN(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(active(X)) -> LEN(X) LEN(mark(X)) -> LEN(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LEN(active(X)) -> LEN(X) The graph contains the following edges 1 > 1 *LEN(mark(X)) -> LEN(X) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(X1, mark(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *ADD(mark(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(active(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(X1, active(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: FST(X1, mark(X2)) -> FST(X1, X2) FST(mark(X1), X2) -> FST(X1, X2) FST(active(X1), X2) -> FST(X1, X2) FST(X1, active(X2)) -> FST(X1, X2) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: FST(X1, mark(X2)) -> FST(X1, X2) FST(mark(X1), X2) -> FST(X1, X2) FST(active(X1), X2) -> FST(X1, X2) FST(X1, active(X2)) -> FST(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FST(X1, mark(X2)) -> FST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *FST(mark(X1), X2) -> FST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FST(active(X1), X2) -> FST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FST(X1, active(X2)) -> FST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(fst(s(X), cons(Y, Z))) -> MARK(cons(Y, fst(X, Z))) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(s(X)) -> ACTIVE(s(X)) ACTIVE(add(0, X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(len(cons(X, Z))) -> MARK(s(len(Z))) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> ACTIVE(len(mark(X))) MARK(len(X)) -> MARK(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(fst(s(X), cons(Y, Z))) -> MARK(cons(Y, fst(X, Z))) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = x1 fst(x1, x2) = fst(x1, x2) s(x1) = s cons(x1, x2) = x1 MARK(x1) = x1 mark(x1) = x1 from(x1) = x1 add(x1, x2) = add(x1, x2) 0 = 0 len(x1) = x1 active(x1) = x1 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=3 0=6 fst_2=3 add_2=1 nil=8 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(s(X)) -> active(s(X)) active(add(0, X)) -> mark(X) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(add(s(X), Y)) -> mark(s(add(X, Y))) mark(from(X)) -> active(from(mark(X))) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(len(nil)) -> mark(0) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(s(X)) -> ACTIVE(s(X)) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(len(cons(X, Z))) -> MARK(s(len(Z))) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(len(X)) -> ACTIVE(len(mark(X))) MARK(len(X)) -> MARK(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(len(cons(X, Z))) -> MARK(s(len(Z))) MARK(len(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 fst(x1, x2) = x2 ACTIVE(x1) = x1 mark(x1) = x1 from(x1) = x1 cons(x1, x2) = x1 s(x1) = s len(x1) = len(x1) add(x1, x2) = add(x2) active(x1) = x1 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=3 0=3 len_1=4 add_1=3 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(s(X)) -> active(s(X)) active(add(0, X)) -> mark(X) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(add(s(X), Y)) -> mark(s(add(X, Y))) mark(from(X)) -> active(from(mark(X))) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) len(active(X)) -> len(X) len(mark(X)) -> len(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) active(fst(0, Z)) -> mark(nil) active(len(nil)) -> mark(0) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(s(X)) -> ACTIVE(s(X)) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(len(X)) -> ACTIVE(len(mark(X))) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 fst(x1, x2) = x2 ACTIVE(x1) = x1 mark(x1) = x1 from(x1) = from(x1) cons(x1, x2) = x1 s(x1) = s add(x1, x2) = add(x2) len(x1) = len active(x1) = x1 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=3 0=3 from_1=1 len=5 add_1=3 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(s(X)) -> active(s(X)) active(add(0, X)) -> mark(X) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(add(s(X), Y)) -> mark(s(add(X, Y))) mark(from(X)) -> active(from(mark(X))) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(len(nil)) -> mark(0) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) MARK(s(X)) -> ACTIVE(s(X)) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(len(X)) -> ACTIVE(len(mark(X))) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (47) YES