/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR N X X1 X2 XS Y) (RULES activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),activate(X2)) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__fib1(X1,X2)) -> FIB1(activate(X1),activate(X2)) ADD(s(X),Y) -> ADD(X,Y) FIB(N) -> FIB1(s(0),s(0)) FIB(N) -> SEL(N,fib1(s(0),s(0))) SEL(s(N),cons(X,XS)) -> ACTIVATE(XS) SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),activate(X2)) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__fib1(X1,X2)) -> FIB1(activate(X1),activate(X2)) ADD(s(X),Y) -> ADD(X,Y) FIB(N) -> FIB1(s(0),s(0)) FIB(N) -> SEL(N,fib1(s(0),s(0))) SEL(s(N),cons(X,XS)) -> ACTIVATE(XS) SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ADD(s(X),Y) -> ADD(X,Y) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->->Cycle: ->->-> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X2) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->->Cycle: ->->-> Pairs: SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: ADD(s(X),Y) -> ADD(X,Y) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->Projection: pi(ADD) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__fib1(X1,X2)) -> ACTIVATE(X2) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->Projection: pi(ACTIVATE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->Projection: pi(SEL) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) add(X1,X2) -> n__add(X1,X2) fib(N) -> sel(N,fib1(s(0),s(0))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.