/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o U11 : [o * o] --> o U21 : [o * o * o] --> o a!6220!6220U11 : [o * o] --> o a!6220!6220U21 : [o * o * o] --> o a!6220!6220and : [o * o] --> o a!6220!6220isNat : [o] --> o a!6220!6220plus : [o * o] --> o and : [o * o] --> o isNat : [o] --> o mark : [o] --> o plus : [o * o] --> o s : [o] --> o tt : [] --> o a!6220!6220U11(tt, X) => mark(X) a!6220!6220U21(tt, X, Y) => s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220and(tt, X) => mark(X) a!6220!6220isNat(0) => tt a!6220!6220isNat(plus(X, Y)) => a!6220!6220and(a!6220!6220isNat(X), isNat(Y)) a!6220!6220isNat(s(X)) => a!6220!6220isNat(X) a!6220!6220plus(X, 0) => a!6220!6220U11(a!6220!6220isNat(X), X) a!6220!6220plus(X, s(Y)) => a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) mark(U11(X, Y)) => a!6220!6220U11(mark(X), Y) mark(U21(X, Y, Z)) => a!6220!6220U21(mark(X), Y, Z) mark(plus(X, Y)) => a!6220!6220plus(mark(X), mark(Y)) mark(and(X, Y)) => a!6220!6220and(mark(X), Y) mark(isNat(X)) => a!6220!6220isNat(X) mark(tt) => tt mark(s(X)) => s(mark(X)) mark(0) => 0 a!6220!6220U11(X, Y) => U11(X, Y) a!6220!6220U21(X, Y, Z) => U21(X, Y, Z) a!6220!6220plus(X, Y) => plus(X, Y) a!6220!6220and(X, Y) => and(X, Y) a!6220!6220isNat(X) => isNat(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220U11(tt, X) >? mark(X) a!6220!6220U21(tt, X, Y) >? s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220and(tt, X) >? mark(X) a!6220!6220isNat(0) >? tt a!6220!6220isNat(plus(X, Y)) >? a!6220!6220and(a!6220!6220isNat(X), isNat(Y)) a!6220!6220isNat(s(X)) >? a!6220!6220isNat(X) a!6220!6220plus(X, 0) >? a!6220!6220U11(a!6220!6220isNat(X), X) a!6220!6220plus(X, s(Y)) >? a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) mark(U11(X, Y)) >? a!6220!6220U11(mark(X), Y) mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) mark(plus(X, Y)) >? a!6220!6220plus(mark(X), mark(Y)) mark(and(X, Y)) >? a!6220!6220and(mark(X), Y) mark(isNat(X)) >? a!6220!6220isNat(X) mark(tt) >? tt mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220U11(X, Y) >? U11(X, Y) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) a!6220!6220plus(X, Y) >? plus(X, Y) a!6220!6220and(X, Y) >? and(X, Y) a!6220!6220isNat(X) >? isNat(X) about to try horpo We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[0]] = _|_ [[U21(x_1, x_2, x_3)]] = U21(x_2, x_3, x_1) [[a!6220!6220U21(x_1, x_2, x_3)]] = a!6220!6220U21(x_2, x_3, x_1) [[a!6220!6220and(x_1, x_2)]] = a!6220!6220and(x_2, x_1) [[a!6220!6220plus(x_1, x_2)]] = a!6220!6220plus(x_2, x_1) [[and(x_1, x_2)]] = and(x_2, x_1) [[mark(x_1)]] = x_1 [[plus(x_1, x_2)]] = plus(x_2, x_1) [[tt]] = _|_ We choose Lex = {U21, a!6220!6220U21, a!6220!6220and, a!6220!6220plus, and, plus} and Mul = {U11, a!6220!6220U11, a!6220!6220isNat, isNat, s}, and the following precedence: U21 = a!6220!6220U21 = a!6220!6220plus = plus > U11 = a!6220!6220U11 > a!6220!6220isNat = isNat = s > a!6220!6220and = and Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: a!6220!6220U11(_|_, X) >= X a!6220!6220U21(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) a!6220!6220and(_|_, X) >= X a!6220!6220isNat(_|_) >= _|_ a!6220!6220isNat(plus(X, Y)) > a!6220!6220and(a!6220!6220isNat(X), isNat(Y)) a!6220!6220isNat(s(X)) > a!6220!6220isNat(X) a!6220!6220plus(X, _|_) > a!6220!6220U11(a!6220!6220isNat(X), X) a!6220!6220plus(X, s(Y)) >= a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) U11(X, Y) >= a!6220!6220U11(X, Y) U21(X, Y, Z) >= a!6220!6220U21(X, Y, Z) plus(X, Y) >= a!6220!6220plus(X, Y) and(X, Y) >= a!6220!6220and(X, Y) isNat(X) >= a!6220!6220isNat(X) _|_ >= _|_ s(X) >= s(X) _|_ >= _|_ a!6220!6220U11(X, Y) >= U11(X, Y) a!6220!6220U21(X, Y, Z) >= U21(X, Y, Z) a!6220!6220plus(X, Y) >= plus(X, Y) a!6220!6220and(X, Y) >= and(X, Y) a!6220!6220isNat(X) >= isNat(X) With these choices, we have: 1] a!6220!6220U11(_|_, X) >= X because [2], by (Star) 2] a!6220!6220U11*(_|_, X) >= X because [3], by (Select) 3] X >= X by (Meta) 4] a!6220!6220U21(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) because [5], by (Star) 5] a!6220!6220U21*(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) because a!6220!6220U21 > s and [6], by (Copy) 6] a!6220!6220U21*(_|_, X, Y) >= a!6220!6220plus(Y, X) because a!6220!6220U21 = a!6220!6220plus, [7], [8], [9] and [10], by (Stat) 7] X >= X by (Meta) 8] Y >= Y by (Meta) 9] a!6220!6220U21*(_|_, X, Y) >= Y because [8], by (Select) 10] a!6220!6220U21*(_|_, X, Y) >= X because [7], by (Select) 11] a!6220!6220and(_|_, X) >= X because [12], by (Star) 12] a!6220!6220and*(_|_, X) >= X because [13], by (Select) 13] X >= X by (Meta) 14] a!6220!6220isNat(_|_) >= _|_ by (Bot) 15] a!6220!6220isNat(plus(X, Y)) > a!6220!6220and(a!6220!6220isNat(X), isNat(Y)) because [16], by definition 16] a!6220!6220isNat*(plus(X, Y)) >= a!6220!6220and(a!6220!6220isNat(X), isNat(Y)) because a!6220!6220isNat > a!6220!6220and, [17] and [22], by (Copy) 17] a!6220!6220isNat*(plus(X, Y)) >= a!6220!6220isNat(X) because [18], by (Select) 18] plus(X, Y) >= a!6220!6220isNat(X) because [19], by (Star) 19] plus*(X, Y) >= a!6220!6220isNat(X) because plus > a!6220!6220isNat and [20], by (Copy) 20] plus*(X, Y) >= X because [21], by (Select) 21] X >= X by (Meta) 22] a!6220!6220isNat*(plus(X, Y)) >= isNat(Y) because [23], by (Select) 23] plus(X, Y) >= isNat(Y) because [24], by (Star) 24] plus*(X, Y) >= isNat(Y) because plus > isNat and [25], by (Copy) 25] plus*(X, Y) >= Y because [26], by (Select) 26] Y >= Y by (Meta) 27] a!6220!6220isNat(s(X)) > a!6220!6220isNat(X) because [28], by definition 28] a!6220!6220isNat*(s(X)) >= a!6220!6220isNat(X) because [29], by (Select) 29] s(X) >= a!6220!6220isNat(X) because s = a!6220!6220isNat, s in Mul and [30], by (Fun) 30] X >= X by (Meta) 31] a!6220!6220plus(X, _|_) > a!6220!6220U11(a!6220!6220isNat(X), X) because [32], by definition 32] a!6220!6220plus*(X, _|_) >= a!6220!6220U11(a!6220!6220isNat(X), X) because a!6220!6220plus > a!6220!6220U11, [33] and [34], by (Copy) 33] a!6220!6220plus*(X, _|_) >= a!6220!6220isNat(X) because a!6220!6220plus > a!6220!6220isNat and [34], by (Copy) 34] a!6220!6220plus*(X, _|_) >= X because [8], by (Select) 35] a!6220!6220plus(X, s(Y)) >= a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) because [36], by (Star) 36] a!6220!6220plus*(X, s(Y)) >= a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) because a!6220!6220plus = a!6220!6220U21, [37], [39], [41] and [44], by (Stat) 37] s(Y) > Y because [38], by definition 38] s*(Y) >= Y because [7], by (Select) 39] a!6220!6220plus*(X, s(Y)) >= a!6220!6220and(a!6220!6220isNat(Y), isNat(X)) because a!6220!6220plus > a!6220!6220and, [40] and [43], by (Copy) 40] a!6220!6220plus*(X, s(Y)) >= a!6220!6220isNat(Y) because a!6220!6220plus > a!6220!6220isNat and [41], by (Copy) 41] a!6220!6220plus*(X, s(Y)) >= Y because [42], by (Select) 42] s(Y) >= Y because [38], by (Star) 43] a!6220!6220plus*(X, s(Y)) >= isNat(X) because a!6220!6220plus > isNat and [44], by (Copy) 44] a!6220!6220plus*(X, s(Y)) >= X because [8], by (Select) 45] U11(X, Y) >= a!6220!6220U11(X, Y) because U11 = a!6220!6220U11, U11 in Mul, [46] and [47], by (Fun) 46] X >= X by (Meta) 47] Y >= Y by (Meta) 48] U21(X, Y, Z) >= a!6220!6220U21(X, Y, Z) because U21 = a!6220!6220U21, [46], [47] and [49], by (Fun) 49] Z >= Z by (Meta) 50] plus(X, Y) >= a!6220!6220plus(X, Y) because plus = a!6220!6220plus, [46] and [51], by (Fun) 51] Y >= Y by (Meta) 52] and(X, Y) >= a!6220!6220and(X, Y) because and = a!6220!6220and, [46] and [51], by (Fun) 53] isNat(X) >= a!6220!6220isNat(X) because isNat = a!6220!6220isNat, isNat in Mul and [54], by (Fun) 54] X >= X by (Meta) 55] _|_ >= _|_ by (Bot) 56] s(X) >= s(X) because s in Mul and [57], by (Fun) 57] X >= X by (Meta) 58] _|_ >= _|_ by (Bot) 59] a!6220!6220U11(X, Y) >= U11(X, Y) because a!6220!6220U11 = U11, a!6220!6220U11 in Mul, [46] and [51], by (Fun) 60] a!6220!6220U21(X, Y, Z) >= U21(X, Y, Z) because a!6220!6220U21 = U21, [46], [51] and [49], by (Fun) 61] a!6220!6220plus(X, Y) >= plus(X, Y) because a!6220!6220plus = plus, [46] and [51], by (Fun) 62] a!6220!6220and(X, Y) >= and(X, Y) because a!6220!6220and = and, [46] and [51], by (Fun) 63] a!6220!6220isNat(X) >= isNat(X) because a!6220!6220isNat = isNat, a!6220!6220isNat in Mul and [57], by (Fun) We can thus remove the following rules: a!6220!6220isNat(plus(X, Y)) => a!6220!6220and(a!6220!6220isNat(X), isNat(Y)) a!6220!6220isNat(s(X)) => a!6220!6220isNat(X) a!6220!6220plus(X, 0) => a!6220!6220U11(a!6220!6220isNat(X), X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220U11(tt, X) >? mark(X) a!6220!6220U21(tt, X, Y) >? s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220and(tt, X) >? mark(X) a!6220!6220isNat(0) >? tt a!6220!6220plus(X, s(Y)) >? a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) mark(U11(X, Y)) >? a!6220!6220U11(mark(X), Y) mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) mark(plus(X, Y)) >? a!6220!6220plus(mark(X), mark(Y)) mark(and(X, Y)) >? a!6220!6220and(mark(X), Y) mark(isNat(X)) >? a!6220!6220isNat(X) mark(tt) >? tt mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220U11(X, Y) >? U11(X, Y) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) a!6220!6220plus(X, Y) >? plus(X, Y) a!6220!6220and(X, Y) >? and(X, Y) a!6220!6220isNat(X) >? isNat(X) about to try horpo We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[0]] = _|_ [[U21(x_1, x_2, x_3)]] = U21(x_2, x_3, x_1) [[a!6220!6220U21(x_1, x_2, x_3)]] = a!6220!6220U21(x_2, x_3, x_1) [[a!6220!6220plus(x_1, x_2)]] = a!6220!6220plus(x_2, x_1) [[mark(x_1)]] = x_1 [[plus(x_1, x_2)]] = plus(x_2, x_1) [[tt]] = _|_ We choose Lex = {U21, a!6220!6220U21, a!6220!6220plus, plus} and Mul = {U11, a!6220!6220U11, a!6220!6220and, a!6220!6220isNat, and, isNat, s}, and the following precedence: U11 = a!6220!6220U11 > U21 = a!6220!6220U21 = a!6220!6220plus = plus > a!6220!6220and = and > a!6220!6220isNat = isNat > s Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: a!6220!6220U11(_|_, X) >= X a!6220!6220U21(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) a!6220!6220and(_|_, X) >= X a!6220!6220isNat(_|_) > _|_ a!6220!6220plus(X, s(Y)) >= a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) U11(X, Y) >= a!6220!6220U11(X, Y) U21(X, Y, Z) >= a!6220!6220U21(X, Y, Z) plus(X, Y) >= a!6220!6220plus(X, Y) and(X, Y) >= a!6220!6220and(X, Y) isNat(X) >= a!6220!6220isNat(X) _|_ >= _|_ s(X) >= s(X) _|_ >= _|_ a!6220!6220U11(X, Y) >= U11(X, Y) a!6220!6220U21(X, Y, Z) >= U21(X, Y, Z) a!6220!6220plus(X, Y) >= plus(X, Y) a!6220!6220and(X, Y) >= and(X, Y) a!6220!6220isNat(X) >= isNat(X) With these choices, we have: 1] a!6220!6220U11(_|_, X) >= X because [2], by (Star) 2] a!6220!6220U11*(_|_, X) >= X because [3], by (Select) 3] X >= X by (Meta) 4] a!6220!6220U21(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) because [5], by (Star) 5] a!6220!6220U21*(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) because a!6220!6220U21 > s and [6], by (Copy) 6] a!6220!6220U21*(_|_, X, Y) >= a!6220!6220plus(Y, X) because a!6220!6220U21 = a!6220!6220plus, [7], [8], [9] and [10], by (Stat) 7] X >= X by (Meta) 8] Y >= Y by (Meta) 9] a!6220!6220U21*(_|_, X, Y) >= Y because [8], by (Select) 10] a!6220!6220U21*(_|_, X, Y) >= X because [7], by (Select) 11] a!6220!6220and(_|_, X) >= X because [12], by (Star) 12] a!6220!6220and*(_|_, X) >= X because [13], by (Select) 13] X >= X by (Meta) 14] a!6220!6220isNat(_|_) > _|_ because [15], by definition 15] a!6220!6220isNat*(_|_) >= _|_ by (Bot) 16] a!6220!6220plus(X, s(Y)) >= a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) because [17], by (Star) 17] a!6220!6220plus*(X, s(Y)) >= a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) because a!6220!6220plus = a!6220!6220U21, [18], [20], [22] and [25], by (Stat) 18] s(Y) > Y because [19], by definition 19] s*(Y) >= Y because [7], by (Select) 20] a!6220!6220plus*(X, s(Y)) >= a!6220!6220and(a!6220!6220isNat(Y), isNat(X)) because a!6220!6220plus > a!6220!6220and, [21] and [24], by (Copy) 21] a!6220!6220plus*(X, s(Y)) >= a!6220!6220isNat(Y) because a!6220!6220plus > a!6220!6220isNat and [22], by (Copy) 22] a!6220!6220plus*(X, s(Y)) >= Y because [23], by (Select) 23] s(Y) >= Y because [19], by (Star) 24] a!6220!6220plus*(X, s(Y)) >= isNat(X) because a!6220!6220plus > isNat and [25], by (Copy) 25] a!6220!6220plus*(X, s(Y)) >= X because [8], by (Select) 26] U11(X, Y) >= a!6220!6220U11(X, Y) because U11 = a!6220!6220U11, U11 in Mul, [27] and [28], by (Fun) 27] X >= X by (Meta) 28] Y >= Y by (Meta) 29] U21(X, Y, Z) >= a!6220!6220U21(X, Y, Z) because U21 = a!6220!6220U21, [27], [28] and [30], by (Fun) 30] Z >= Z by (Meta) 31] plus(X, Y) >= a!6220!6220plus(X, Y) because plus = a!6220!6220plus, [27] and [32], by (Fun) 32] Y >= Y by (Meta) 33] and(X, Y) >= a!6220!6220and(X, Y) because and = a!6220!6220and, and in Mul, [27] and [32], by (Fun) 34] isNat(X) >= a!6220!6220isNat(X) because isNat = a!6220!6220isNat, isNat in Mul and [35], by (Fun) 35] X >= X by (Meta) 36] _|_ >= _|_ by (Bot) 37] s(X) >= s(X) because s in Mul and [38], by (Fun) 38] X >= X by (Meta) 39] _|_ >= _|_ by (Bot) 40] a!6220!6220U11(X, Y) >= U11(X, Y) because a!6220!6220U11 = U11, a!6220!6220U11 in Mul, [27] and [32], by (Fun) 41] a!6220!6220U21(X, Y, Z) >= U21(X, Y, Z) because a!6220!6220U21 = U21, [27], [32] and [30], by (Fun) 42] a!6220!6220plus(X, Y) >= plus(X, Y) because a!6220!6220plus = plus, [27] and [32], by (Fun) 43] a!6220!6220and(X, Y) >= and(X, Y) because a!6220!6220and = and, a!6220!6220and in Mul, [27] and [32], by (Fun) 44] a!6220!6220isNat(X) >= isNat(X) because a!6220!6220isNat = isNat, a!6220!6220isNat in Mul and [38], by (Fun) We can thus remove the following rules: a!6220!6220isNat(0) => tt We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220U11(tt, X) >? mark(X) a!6220!6220U21(tt, X, Y) >? s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220and(tt, X) >? mark(X) a!6220!6220plus(X, s(Y)) >? a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) mark(U11(X, Y)) >? a!6220!6220U11(mark(X), Y) mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) mark(plus(X, Y)) >? a!6220!6220plus(mark(X), mark(Y)) mark(and(X, Y)) >? a!6220!6220and(mark(X), Y) mark(isNat(X)) >? a!6220!6220isNat(X) mark(tt) >? tt mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220U11(X, Y) >? U11(X, Y) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) a!6220!6220plus(X, Y) >? plus(X, Y) a!6220!6220and(X, Y) >? and(X, Y) a!6220!6220isNat(X) >? isNat(X) about to try horpo We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[0]] = _|_ [[U21(x_1, x_2, x_3)]] = U21(x_2, x_3, x_1) [[a!6220!6220U21(x_1, x_2, x_3)]] = a!6220!6220U21(x_2, x_3, x_1) [[a!6220!6220plus(x_1, x_2)]] = a!6220!6220plus(x_2, x_1) [[mark(x_1)]] = x_1 [[plus(x_1, x_2)]] = plus(x_2, x_1) [[tt]] = _|_ We choose Lex = {U21, a!6220!6220U21, a!6220!6220plus, plus} and Mul = {U11, a!6220!6220U11, a!6220!6220and, a!6220!6220isNat, and, isNat, s}, and the following precedence: U11 = a!6220!6220U11 > U21 = a!6220!6220U21 = a!6220!6220plus = plus > a!6220!6220and = and > a!6220!6220isNat = isNat > s Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: a!6220!6220U11(_|_, X) >= X a!6220!6220U21(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) a!6220!6220and(_|_, X) > X a!6220!6220plus(X, s(Y)) > a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) U11(X, Y) >= a!6220!6220U11(X, Y) U21(X, Y, Z) >= a!6220!6220U21(X, Y, Z) plus(X, Y) >= a!6220!6220plus(X, Y) and(X, Y) >= a!6220!6220and(X, Y) isNat(X) >= a!6220!6220isNat(X) _|_ >= _|_ s(X) >= s(X) _|_ >= _|_ a!6220!6220U11(X, Y) >= U11(X, Y) a!6220!6220U21(X, Y, Z) >= U21(X, Y, Z) a!6220!6220plus(X, Y) >= plus(X, Y) a!6220!6220and(X, Y) >= and(X, Y) a!6220!6220isNat(X) >= isNat(X) With these choices, we have: 1] a!6220!6220U11(_|_, X) >= X because [2], by (Star) 2] a!6220!6220U11*(_|_, X) >= X because [3], by (Select) 3] X >= X by (Meta) 4] a!6220!6220U21(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) because [5], by (Star) 5] a!6220!6220U21*(_|_, X, Y) >= s(a!6220!6220plus(Y, X)) because a!6220!6220U21 > s and [6], by (Copy) 6] a!6220!6220U21*(_|_, X, Y) >= a!6220!6220plus(Y, X) because a!6220!6220U21 = a!6220!6220plus, [7], [8], [9] and [10], by (Stat) 7] X >= X by (Meta) 8] Y >= Y by (Meta) 9] a!6220!6220U21*(_|_, X, Y) >= Y because [8], by (Select) 10] a!6220!6220U21*(_|_, X, Y) >= X because [7], by (Select) 11] a!6220!6220and(_|_, X) > X because [12], by definition 12] a!6220!6220and*(_|_, X) >= X because [13], by (Select) 13] X >= X by (Meta) 14] a!6220!6220plus(X, s(Y)) > a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) because [15], by definition 15] a!6220!6220plus*(X, s(Y)) >= a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) because a!6220!6220plus = a!6220!6220U21, [16], [18], [20] and [23], by (Stat) 16] s(Y) > Y because [17], by definition 17] s*(Y) >= Y because [7], by (Select) 18] a!6220!6220plus*(X, s(Y)) >= a!6220!6220and(a!6220!6220isNat(Y), isNat(X)) because a!6220!6220plus > a!6220!6220and, [19] and [22], by (Copy) 19] a!6220!6220plus*(X, s(Y)) >= a!6220!6220isNat(Y) because a!6220!6220plus > a!6220!6220isNat and [20], by (Copy) 20] a!6220!6220plus*(X, s(Y)) >= Y because [21], by (Select) 21] s(Y) >= Y because [17], by (Star) 22] a!6220!6220plus*(X, s(Y)) >= isNat(X) because a!6220!6220plus > isNat and [23], by (Copy) 23] a!6220!6220plus*(X, s(Y)) >= X because [8], by (Select) 24] U11(X, Y) >= a!6220!6220U11(X, Y) because U11 = a!6220!6220U11, U11 in Mul, [25] and [26], by (Fun) 25] X >= X by (Meta) 26] Y >= Y by (Meta) 27] U21(X, Y, Z) >= a!6220!6220U21(X, Y, Z) because U21 = a!6220!6220U21, [25], [26] and [28], by (Fun) 28] Z >= Z by (Meta) 29] plus(X, Y) >= a!6220!6220plus(X, Y) because plus = a!6220!6220plus, [25] and [30], by (Fun) 30] Y >= Y by (Meta) 31] and(X, Y) >= a!6220!6220and(X, Y) because and = a!6220!6220and, and in Mul, [25] and [30], by (Fun) 32] isNat(X) >= a!6220!6220isNat(X) because isNat = a!6220!6220isNat, isNat in Mul and [33], by (Fun) 33] X >= X by (Meta) 34] _|_ >= _|_ by (Bot) 35] s(X) >= s(X) because s in Mul and [36], by (Fun) 36] X >= X by (Meta) 37] _|_ >= _|_ by (Bot) 38] a!6220!6220U11(X, Y) >= U11(X, Y) because a!6220!6220U11 = U11, a!6220!6220U11 in Mul, [25] and [30], by (Fun) 39] a!6220!6220U21(X, Y, Z) >= U21(X, Y, Z) because a!6220!6220U21 = U21, [25], [30] and [28], by (Fun) 40] a!6220!6220plus(X, Y) >= plus(X, Y) because a!6220!6220plus = plus, [25] and [30], by (Fun) 41] a!6220!6220and(X, Y) >= and(X, Y) because a!6220!6220and = and, a!6220!6220and in Mul, [25] and [30], by (Fun) 42] a!6220!6220isNat(X) >= isNat(X) because a!6220!6220isNat = isNat, a!6220!6220isNat in Mul and [36], by (Fun) We can thus remove the following rules: a!6220!6220and(tt, X) => mark(X) a!6220!6220plus(X, s(Y)) => a!6220!6220U21(a!6220!6220and(a!6220!6220isNat(Y), isNat(X)), Y, X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220U11(tt, X) >? mark(X) a!6220!6220U21(tt, X, Y) >? s(a!6220!6220plus(mark(Y), mark(X))) mark(U11(X, Y)) >? a!6220!6220U11(mark(X), Y) mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) mark(plus(X, Y)) >? a!6220!6220plus(mark(X), mark(Y)) mark(and(X, Y)) >? a!6220!6220and(mark(X), Y) mark(isNat(X)) >? a!6220!6220isNat(X) mark(tt) >? tt mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220U11(X, Y) >? U11(X, Y) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) a!6220!6220plus(X, Y) >? plus(X, Y) a!6220!6220and(X, Y) >? and(X, Y) a!6220!6220isNat(X) >? isNat(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 U11 = \y0y1.y1 + 2y0 U21 = \y0y1y2.y1 + 2y0 + 2y2 a!6220!6220U11 = \y0y1.y1 + 2y0 a!6220!6220U21 = \y0y1y2.y1 + 2y0 + 2y2 a!6220!6220and = \y0y1.y0 + y1 a!6220!6220isNat = \y0.y0 a!6220!6220plus = \y0y1.y0 + y1 and = \y0y1.y0 + y1 isNat = \y0.y0 mark = \y0.y0 plus = \y0y1.y0 + y1 s = \y0.3 + y0 tt = 2 Using this interpretation, the requirements translate to: [[a!6220!6220U11(tt, _x0)]] = 4 + x0 > x0 = [[mark(_x0)]] [[a!6220!6220U21(tt, _x0, _x1)]] = 4 + x0 + 2x1 > 3 + x0 + x1 = [[s(a!6220!6220plus(mark(_x1), mark(_x0)))]] [[mark(U11(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[a!6220!6220U11(mark(_x0), _x1)]] [[mark(U21(_x0, _x1, _x2))]] = x1 + 2x0 + 2x2 >= x1 + 2x0 + 2x2 = [[a!6220!6220U21(mark(_x0), _x1, _x2)]] [[mark(plus(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220plus(mark(_x0), mark(_x1))]] [[mark(and(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220and(mark(_x0), _x1)]] [[mark(isNat(_x0))]] = x0 >= x0 = [[a!6220!6220isNat(_x0)]] [[mark(tt)]] = 2 >= 2 = [[tt]] [[mark(s(_x0))]] = 3 + x0 >= 3 + x0 = [[s(mark(_x0))]] [[mark(0)]] = 3 >= 3 = [[0]] [[a!6220!6220U11(_x0, _x1)]] = x1 + 2x0 >= x1 + 2x0 = [[U11(_x0, _x1)]] [[a!6220!6220U21(_x0, _x1, _x2)]] = x1 + 2x0 + 2x2 >= x1 + 2x0 + 2x2 = [[U21(_x0, _x1, _x2)]] [[a!6220!6220plus(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[plus(_x0, _x1)]] [[a!6220!6220and(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[and(_x0, _x1)]] [[a!6220!6220isNat(_x0)]] = x0 >= x0 = [[isNat(_x0)]] We can thus remove the following rules: a!6220!6220U11(tt, X) => mark(X) a!6220!6220U21(tt, X, Y) => s(a!6220!6220plus(mark(Y), mark(X))) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): mark(U11(X, Y)) >? a!6220!6220U11(mark(X), Y) mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) mark(plus(X, Y)) >? a!6220!6220plus(mark(X), mark(Y)) mark(and(X, Y)) >? a!6220!6220and(mark(X), Y) mark(isNat(X)) >? a!6220!6220isNat(X) mark(tt) >? tt mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220U11(X, Y) >? U11(X, Y) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) a!6220!6220plus(X, Y) >? plus(X, Y) a!6220!6220and(X, Y) >? and(X, Y) a!6220!6220isNat(X) >? isNat(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 U11 = \y0y1.3 + y0 + 2y1 U21 = \y0y1y2.y0 + y1 + 2y2 a!6220!6220U11 = \y0y1.3 + y0 + 2y1 a!6220!6220U21 = \y0y1y2.y0 + 2y1 + 2y2 a!6220!6220and = \y0y1.1 + y0 + 2y1 a!6220!6220isNat = \y0.y0 a!6220!6220plus = \y0y1.1 + y0 + y1 and = \y0y1.1 + y0 + 2y1 isNat = \y0.y0 mark = \y0.2y0 plus = \y0y1.1 + y0 + y1 s = \y0.y0 tt = 1 Using this interpretation, the requirements translate to: [[mark(U11(_x0, _x1))]] = 6 + 2x0 + 4x1 > 3 + 2x0 + 2x1 = [[a!6220!6220U11(mark(_x0), _x1)]] [[mark(U21(_x0, _x1, _x2))]] = 2x0 + 2x1 + 4x2 >= 2x0 + 2x1 + 2x2 = [[a!6220!6220U21(mark(_x0), _x1, _x2)]] [[mark(plus(_x0, _x1))]] = 2 + 2x0 + 2x1 > 1 + 2x0 + 2x1 = [[a!6220!6220plus(mark(_x0), mark(_x1))]] [[mark(and(_x0, _x1))]] = 2 + 2x0 + 4x1 > 1 + 2x0 + 2x1 = [[a!6220!6220and(mark(_x0), _x1)]] [[mark(isNat(_x0))]] = 2x0 >= x0 = [[a!6220!6220isNat(_x0)]] [[mark(tt)]] = 2 > 1 = [[tt]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220U11(_x0, _x1)]] = 3 + x0 + 2x1 >= 3 + x0 + 2x1 = [[U11(_x0, _x1)]] [[a!6220!6220U21(_x0, _x1, _x2)]] = x0 + 2x1 + 2x2 >= x0 + x1 + 2x2 = [[U21(_x0, _x1, _x2)]] [[a!6220!6220plus(_x0, _x1)]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[plus(_x0, _x1)]] [[a!6220!6220and(_x0, _x1)]] = 1 + x0 + 2x1 >= 1 + x0 + 2x1 = [[and(_x0, _x1)]] [[a!6220!6220isNat(_x0)]] = x0 >= x0 = [[isNat(_x0)]] We can thus remove the following rules: mark(U11(X, Y)) => a!6220!6220U11(mark(X), Y) mark(plus(X, Y)) => a!6220!6220plus(mark(X), mark(Y)) mark(and(X, Y)) => a!6220!6220and(mark(X), Y) mark(tt) => tt We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) mark(isNat(X)) >? a!6220!6220isNat(X) mark(s(X)) >? s(mark(X)) mark(0) >? 0 a!6220!6220U11(X, Y) >? U11(X, Y) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) a!6220!6220plus(X, Y) >? plus(X, Y) a!6220!6220and(X, Y) >? and(X, Y) a!6220!6220isNat(X) >? isNat(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 2 U11 = \y0y1.y0 + y1 U21 = \y0y1y2.y0 + y2 + 2y1 a!6220!6220U11 = \y0y1.3 + y0 + y1 a!6220!6220U21 = \y0y1y2.y0 + y2 + 2y1 a!6220!6220and = \y0y1.3 + y0 + 2y1 a!6220!6220isNat = \y0.2 + 2y0 a!6220!6220plus = \y0y1.3 + 2y0 + 2y1 and = \y0y1.y0 + y1 isNat = \y0.1 + 2y0 mark = \y0.2y0 plus = \y0y1.y0 + y1 s = \y0.1 + y0 Using this interpretation, the requirements translate to: [[mark(U21(_x0, _x1, _x2))]] = 2x0 + 2x2 + 4x1 >= x2 + 2x0 + 2x1 = [[a!6220!6220U21(mark(_x0), _x1, _x2)]] [[mark(isNat(_x0))]] = 2 + 4x0 >= 2 + 2x0 = [[a!6220!6220isNat(_x0)]] [[mark(s(_x0))]] = 2 + 2x0 > 1 + 2x0 = [[s(mark(_x0))]] [[mark(0)]] = 4 > 2 = [[0]] [[a!6220!6220U11(_x0, _x1)]] = 3 + x0 + x1 > x0 + x1 = [[U11(_x0, _x1)]] [[a!6220!6220U21(_x0, _x1, _x2)]] = x0 + x2 + 2x1 >= x0 + x2 + 2x1 = [[U21(_x0, _x1, _x2)]] [[a!6220!6220plus(_x0, _x1)]] = 3 + 2x0 + 2x1 > x0 + x1 = [[plus(_x0, _x1)]] [[a!6220!6220and(_x0, _x1)]] = 3 + x0 + 2x1 > x0 + x1 = [[and(_x0, _x1)]] [[a!6220!6220isNat(_x0)]] = 2 + 2x0 > 1 + 2x0 = [[isNat(_x0)]] We can thus remove the following rules: mark(s(X)) => s(mark(X)) mark(0) => 0 a!6220!6220U11(X, Y) => U11(X, Y) a!6220!6220plus(X, Y) => plus(X, Y) a!6220!6220and(X, Y) => and(X, Y) a!6220!6220isNat(X) => isNat(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) mark(isNat(X)) >? a!6220!6220isNat(X) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: U21 = \y0y1y2.y0 + y1 + y2 a!6220!6220U21 = \y0y1y2.y0 + y1 + y2 a!6220!6220isNat = \y0.y0 isNat = \y0.3 + y0 mark = \y0.y0 Using this interpretation, the requirements translate to: [[mark(U21(_x0, _x1, _x2))]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[a!6220!6220U21(mark(_x0), _x1, _x2)]] [[mark(isNat(_x0))]] = 3 + x0 > x0 = [[a!6220!6220isNat(_x0)]] [[a!6220!6220U21(_x0, _x1, _x2)]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[U21(_x0, _x1, _x2)]] We can thus remove the following rules: mark(isNat(X)) => a!6220!6220isNat(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): mark(U21(X, Y, Z)) >? a!6220!6220U21(mark(X), Y, Z) a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: U21 = \y0y1y2.2 + y0 + y2 + 2y1 a!6220!6220U21 = \y0y1y2.2 + y0 + y2 + 2y1 mark = \y0.2y0 Using this interpretation, the requirements translate to: [[mark(U21(_x0, _x1, _x2))]] = 4 + 2x0 + 2x2 + 4x1 > 2 + x2 + 2x0 + 2x1 = [[a!6220!6220U21(mark(_x0), _x1, _x2)]] [[a!6220!6220U21(_x0, _x1, _x2)]] = 2 + x0 + x2 + 2x1 >= 2 + x0 + x2 + 2x1 = [[U21(_x0, _x1, _x2)]] We can thus remove the following rules: mark(U21(X, Y, Z)) => a!6220!6220U21(mark(X), Y, Z) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220U21(X, Y, Z) >? U21(X, Y, Z) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: U21 = \y0y1y2.y0 + y1 + y2 a!6220!6220U21 = \y0y1y2.3 + 3y0 + 3y1 + 3y2 Using this interpretation, the requirements translate to: [[a!6220!6220U21(_x0, _x1, _x2)]] = 3 + 3x0 + 3x1 + 3x2 > x0 + x1 + x2 = [[U21(_x0, _x1, _x2)]] We can thus remove the following rules: a!6220!6220U21(X, Y, Z) => U21(X, Y, Z) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.