/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPOrderProof [EQUIVALENT, 0 ms] (12) QDP (13) PisEmptyProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPOrderProof [EQUIVALENT, 11 ms] (17) QDP (18) UsableRulesProof [EQUIVALENT, 0 ms] (19) QDP (20) QDPSizeChangeProof [EQUIVALENT, 0 ms] (21) YES (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS)) SEL(s(N), cons(X, XS)) -> ACTIVATE(XS) MINUS(s(X), s(Y)) -> MINUS(X, Y) QUOT(s(X), s(Y)) -> S(quot(minus(X, Y), s(Y))) QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y)) QUOT(s(X), s(Y)) -> MINUS(X, Y) ZWQUOT(cons(X, XS), cons(Y, YS)) -> QUOT(X, Y) ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS) ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__zWquot(X1, X2)) -> ZWQUOT(activate(X1), activate(X2)) ACTIVATE(n__zWquot(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__zWquot(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 6 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(X), s(Y)) -> MINUS(X, Y) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(X), s(Y)) -> MINUS(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(X), s(Y)) -> MINUS(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y)) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. QUOT(x1, x2) = x1 s(x1) = s minus(x1, x2) = minus 0 = 0 Knuth-Bendix order [KBO] with precedence:s > minus > 0 and weight map: s=1 0=1 minus=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) ---------------------------------------- (12) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__zWquot(X1, X2)) -> ZWQUOT(activate(X1), activate(X2)) ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS) ACTIVATE(n__zWquot(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__zWquot(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS) ACTIVATE(n__zWquot(X1, X2)) -> ZWQUOT(activate(X1), activate(X2)) ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS) ACTIVATE(n__zWquot(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__zWquot(X1, X2)) -> ACTIVATE(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ZWQUOT(x1, x2) = ZWQUOT(x1, x2) cons(x1, x2) = x2 ACTIVATE(x1) = x1 n__from(x1) = x1 n__s(x1) = x1 n__zWquot(x1, x2) = n__zWquot(x1, x2) activate(x1) = activate(x1) from(x1) = x1 s(x1) = x1 zWquot(x1, x2) = zWquot(x1, x2) nil = nil Knuth-Bendix order [KBO] with precedence:activate_1 > ZWQUOT_2 activate_1 > zWquot_2 > n__zWquot_2 activate_1 > nil and weight map: n__zWquot_2=2 zWquot_2=2 activate_1=0 ZWQUOT_2=1 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) s(X) -> n__s(X) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(X1, X2) -> n__zWquot(X1, X2) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__from(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (21) YES ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS)) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) s(X) -> n__s(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS)) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES