/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o activate : [o] --> o cons : [o * o] --> o from : [o] --> o minus : [o * o] --> o n!6220!6220from : [o] --> o n!6220!6220s : [o] --> o n!6220!6220zWquot : [o * o] --> o nil : [] --> o quot : [o * o] --> o s : [o] --> o sel : [o * o] --> o zWquot : [o * o] --> o from(X) => cons(X, n!6220!6220from(n!6220!6220s(X))) sel(0, cons(X, Y)) => X sel(s(X), cons(Y, Z)) => sel(X, activate(Z)) minus(X, 0) => 0 minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) zWquot(X, nil) => nil zWquot(nil, X) => nil zWquot(cons(X, Y), cons(Z, U)) => cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) => n!6220!6220from(X) s(X) => n!6220!6220s(X) zWquot(X, Y) => n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) => from(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220zWquot(X, Y)) => zWquot(activate(X), activate(Y)) activate(X) => X We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] sel#(s(X), cons(Y, Z)) =#> sel#(X, activate(Z)) 1] sel#(s(X), cons(Y, Z)) =#> activate#(Z) 2] minus#(s(X), s(Y)) =#> minus#(X, Y) 3] quot#(s(X), s(Y)) =#> s#(quot(minus(X, Y), s(Y))) 4] quot#(s(X), s(Y)) =#> quot#(minus(X, Y), s(Y)) 5] quot#(s(X), s(Y)) =#> minus#(X, Y) 6] quot#(s(X), s(Y)) =#> s#(Y) 7] zWquot#(cons(X, Y), cons(Z, U)) =#> quot#(X, Z) 8] zWquot#(cons(X, Y), cons(Z, U)) =#> activate#(Y) 9] zWquot#(cons(X, Y), cons(Z, U)) =#> activate#(U) 10] activate#(n!6220!6220from(X)) =#> from#(activate(X)) 11] activate#(n!6220!6220from(X)) =#> activate#(X) 12] activate#(n!6220!6220s(X)) =#> s#(activate(X)) 13] activate#(n!6220!6220s(X)) =#> activate#(X) 14] activate#(n!6220!6220zWquot(X, Y)) =#> zWquot#(activate(X), activate(Y)) 15] activate#(n!6220!6220zWquot(X, Y)) =#> activate#(X) 16] activate#(n!6220!6220zWquot(X, Y)) =#> activate#(Y) Rules R_0: from(X) => cons(X, n!6220!6220from(n!6220!6220s(X))) sel(0, cons(X, Y)) => X sel(s(X), cons(Y, Z)) => sel(X, activate(Z)) minus(X, 0) => 0 minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) zWquot(X, nil) => nil zWquot(nil, X) => nil zWquot(cons(X, Y), cons(Z, U)) => cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) => n!6220!6220from(X) s(X) => n!6220!6220s(X) zWquot(X, Y) => n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) => from(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220zWquot(X, Y)) => zWquot(activate(X), activate(Y)) activate(X) => X Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1 * 1 : 10, 11, 12, 13, 14, 15, 16 * 2 : 2 * 3 : * 4 : * 5 : 2 * 6 : * 7 : 3, 4, 5, 6 * 8 : 10, 11, 12, 13, 14, 15, 16 * 9 : 10, 11, 12, 13, 14, 15, 16 * 10 : * 11 : 10, 11, 12, 13, 14, 15, 16 * 12 : * 13 : 10, 11, 12, 13, 14, 15, 16 * 14 : 7, 8, 9 * 15 : 10, 11, 12, 13, 14, 15, 16 * 16 : 10, 11, 12, 13, 14, 15, 16 This graph has the following strongly connected components: P_1: sel#(s(X), cons(Y, Z)) =#> sel#(X, activate(Z)) P_2: minus#(s(X), s(Y)) =#> minus#(X, Y) P_3: zWquot#(cons(X, Y), cons(Z, U)) =#> activate#(Y) zWquot#(cons(X, Y), cons(Z, U)) =#> activate#(U) activate#(n!6220!6220from(X)) =#> activate#(X) activate#(n!6220!6220s(X)) =#> activate#(X) activate#(n!6220!6220zWquot(X, Y)) =#> zWquot#(activate(X), activate(Y)) activate#(n!6220!6220zWquot(X, Y)) =#> activate#(X) activate#(n!6220!6220zWquot(X, Y)) =#> activate#(Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). The formative rules of (P_3, R_0) are R_1 ::= from(X) => cons(X, n!6220!6220from(n!6220!6220s(X))) sel(0, cons(X, Y)) => X sel(s(X), cons(Y, Z)) => sel(X, activate(Z)) minus(X, 0) => 0 minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) zWquot(cons(X, Y), cons(Z, U)) => cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) => n!6220!6220from(X) s(X) => n!6220!6220s(X) zWquot(X, Y) => n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) => from(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220zWquot(X, Y)) => zWquot(activate(X), activate(Y)) activate(X) => X By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_3, R_0, minimal, formative) by (P_3, R_1, minimal, formative). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_3, R_1) are: from(X) => cons(X, n!6220!6220from(n!6220!6220s(X))) minus(X, 0) => 0 minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) zWquot(cons(X, Y), cons(Z, U)) => cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) => n!6220!6220from(X) s(X) => n!6220!6220s(X) zWquot(X, Y) => n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) => from(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220zWquot(X, Y)) => zWquot(activate(X), activate(Y)) activate(X) => X It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: zWquot#(cons(X, Y), cons(Z, U)) >? activate#(Y) zWquot#(cons(X, Y), cons(Z, U)) >? activate#(U) activate#(n!6220!6220from(X)) >? activate#(X) activate#(n!6220!6220s(X)) >? activate#(X) activate#(n!6220!6220zWquot(X, Y)) >? zWquot#(activate(X), activate(Y)) activate#(n!6220!6220zWquot(X, Y)) >? activate#(X) activate#(n!6220!6220zWquot(X, Y)) >? activate#(Y) from(X) >= cons(X, n!6220!6220from(n!6220!6220s(X))) minus(X, 0) >= 0 minus(s(X), s(Y)) >= minus(X, Y) quot(0, s(X)) >= 0 quot(s(X), s(Y)) >= s(quot(minus(X, Y), s(Y))) zWquot(cons(X, Y), cons(Z, U)) >= cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) >= n!6220!6220from(X) s(X) >= n!6220!6220s(X) zWquot(X, Y) >= n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) >= from(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220zWquot(X, Y)) >= zWquot(activate(X), activate(Y)) activate(X) >= X We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: cons(x_1,x_2) = cons(x_2) This leaves the following ordering requirements: zWquot#(cons(X, Y), cons(Z, U)) >= activate#(Y) zWquot#(cons(X, Y), cons(Z, U)) >= activate#(U) activate#(n!6220!6220from(X)) > activate#(X) activate#(n!6220!6220s(X)) >= activate#(X) activate#(n!6220!6220zWquot(X, Y)) >= zWquot#(activate(X), activate(Y)) activate#(n!6220!6220zWquot(X, Y)) >= activate#(X) activate#(n!6220!6220zWquot(X, Y)) >= activate#(Y) from(X) >= cons(X, n!6220!6220from(n!6220!6220s(X))) zWquot(cons(X, Y), cons(Z, U)) >= cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) >= n!6220!6220from(X) s(X) >= n!6220!6220s(X) zWquot(X, Y) >= n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) >= from(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220zWquot(X, Y)) >= zWquot(activate(X), activate(Y)) activate(X) >= X The following interpretation satisfies the requirements: 0 = 0 activate = \y0.y0 activate# = \y0.y0 cons = \y0y1.y1 from = \y0.2 + 2y0 minus = \y0y1.0 n!6220!6220from = \y0.2 + 2y0 n!6220!6220s = \y0.y0 n!6220!6220zWquot = \y0y1.2y0 + 2y1 quot = \y0y1.0 s = \y0.y0 zWquot = \y0y1.2y0 + 2y1 zWquot# = \y0y1.2y0 + 2y1 Using this interpretation, the requirements translate to: [[zWquot#(cons(_x0, _x1), cons(_x2, _x3))]] = 2x1 + 2x3 >= x1 = [[activate#(_x1)]] [[zWquot#(cons(_x0, _x1), cons(_x2, _x3))]] = 2x1 + 2x3 >= x3 = [[activate#(_x3)]] [[activate#(n!6220!6220from(_x0))]] = 2 + 2x0 > x0 = [[activate#(_x0)]] [[activate#(n!6220!6220s(_x0))]] = x0 >= x0 = [[activate#(_x0)]] [[activate#(n!6220!6220zWquot(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[zWquot#(activate(_x0), activate(_x1))]] [[activate#(n!6220!6220zWquot(_x0, _x1))]] = 2x0 + 2x1 >= x0 = [[activate#(_x0)]] [[activate#(n!6220!6220zWquot(_x0, _x1))]] = 2x0 + 2x1 >= x1 = [[activate#(_x1)]] [[from(_x0)]] = 2 + 2x0 >= 2 + 2x0 = [[cons(_x0, n!6220!6220from(n!6220!6220s(_x0)))]] [[zWquot(cons(_x0, _x1), cons(_x2, _x3))]] = 2x1 + 2x3 >= 2x1 + 2x3 = [[cons(quot(_x0, _x2), n!6220!6220zWquot(activate(_x1), activate(_x3)))]] [[from(_x0)]] = 2 + 2x0 >= 2 + 2x0 = [[n!6220!6220from(_x0)]] [[s(_x0)]] = x0 >= x0 = [[n!6220!6220s(_x0)]] [[zWquot(_x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[n!6220!6220zWquot(_x0, _x1)]] [[activate(n!6220!6220from(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[from(activate(_x0))]] [[activate(n!6220!6220s(_x0))]] = x0 >= x0 = [[s(activate(_x0))]] [[activate(n!6220!6220zWquot(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[zWquot(activate(_x0), activate(_x1))]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_3, R_1, minimal, formative) by (P_4, R_1, minimal, formative), where P_4 consists of: zWquot#(cons(X, Y), cons(Z, U)) =#> activate#(Y) zWquot#(cons(X, Y), cons(Z, U)) =#> activate#(U) activate#(n!6220!6220s(X)) =#> activate#(X) activate#(n!6220!6220zWquot(X, Y)) =#> zWquot#(activate(X), activate(Y)) activate#(n!6220!6220zWquot(X, Y)) =#> activate#(X) activate#(n!6220!6220zWquot(X, Y)) =#> activate#(Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_4, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_1, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_4, R_1) are: from(X) => cons(X, n!6220!6220from(n!6220!6220s(X))) minus(X, 0) => 0 minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) zWquot(cons(X, Y), cons(Z, U)) => cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) => n!6220!6220from(X) s(X) => n!6220!6220s(X) zWquot(X, Y) => n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) => from(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220zWquot(X, Y)) => zWquot(activate(X), activate(Y)) activate(X) => X It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: zWquot#(cons(X, Y), cons(Z, U)) >? activate#(Y) zWquot#(cons(X, Y), cons(Z, U)) >? activate#(U) activate#(n!6220!6220s(X)) >? activate#(X) activate#(n!6220!6220zWquot(X, Y)) >? zWquot#(activate(X), activate(Y)) activate#(n!6220!6220zWquot(X, Y)) >? activate#(X) activate#(n!6220!6220zWquot(X, Y)) >? activate#(Y) from(X) >= cons(X, n!6220!6220from(n!6220!6220s(X))) minus(X, 0) >= 0 minus(s(X), s(Y)) >= minus(X, Y) quot(0, s(X)) >= 0 quot(s(X), s(Y)) >= s(quot(minus(X, Y), s(Y))) zWquot(cons(X, Y), cons(Z, U)) >= cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) >= n!6220!6220from(X) s(X) >= n!6220!6220s(X) zWquot(X, Y) >= n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) >= from(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220zWquot(X, Y)) >= zWquot(activate(X), activate(Y)) activate(X) >= X We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: cons(x_1,x_2) = cons(x_2) This leaves the following ordering requirements: zWquot#(cons(X, Y), cons(Z, U)) >= activate#(Y) zWquot#(cons(X, Y), cons(Z, U)) > activate#(U) activate#(n!6220!6220s(X)) >= activate#(X) activate#(n!6220!6220zWquot(X, Y)) >= zWquot#(activate(X), activate(Y)) activate#(n!6220!6220zWquot(X, Y)) >= activate#(X) activate#(n!6220!6220zWquot(X, Y)) >= activate#(Y) from(X) >= cons(X, n!6220!6220from(n!6220!6220s(X))) zWquot(cons(X, Y), cons(Z, U)) >= cons(quot(X, Z), n!6220!6220zWquot(activate(Y), activate(U))) from(X) >= n!6220!6220from(X) s(X) >= n!6220!6220s(X) zWquot(X, Y) >= n!6220!6220zWquot(X, Y) activate(n!6220!6220from(X)) >= from(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220zWquot(X, Y)) >= zWquot(activate(X), activate(Y)) activate(X) >= X The following interpretation satisfies the requirements: 0 = 0 activate = \y0.y0 activate# = \y0.y0 cons = \y0y1.y1 from = \y0.0 minus = \y0y1.0 n!6220!6220from = \y0.0 n!6220!6220s = \y0.2y0 n!6220!6220zWquot = \y0y1.1 + y1 + 2y0 quot = \y0y1.0 s = \y0.2y0 zWquot = \y0y1.1 + y1 + 2y0 zWquot# = \y0y1.1 + y1 + 2y0 Using this interpretation, the requirements translate to: [[zWquot#(cons(_x0, _x1), cons(_x2, _x3))]] = 1 + x3 + 2x1 > x1 = [[activate#(_x1)]] [[zWquot#(cons(_x0, _x1), cons(_x2, _x3))]] = 1 + x3 + 2x1 > x3 = [[activate#(_x3)]] [[activate#(n!6220!6220s(_x0))]] = 2x0 >= x0 = [[activate#(_x0)]] [[activate#(n!6220!6220zWquot(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[zWquot#(activate(_x0), activate(_x1))]] [[activate#(n!6220!6220zWquot(_x0, _x1))]] = 1 + x1 + 2x0 > x0 = [[activate#(_x0)]] [[activate#(n!6220!6220zWquot(_x0, _x1))]] = 1 + x1 + 2x0 > x1 = [[activate#(_x1)]] [[from(_x0)]] = 0 >= 0 = [[cons(_x0, n!6220!6220from(n!6220!6220s(_x0)))]] [[zWquot(cons(_x0, _x1), cons(_x2, _x3))]] = 1 + x3 + 2x1 >= 1 + x3 + 2x1 = [[cons(quot(_x0, _x2), n!6220!6220zWquot(activate(_x1), activate(_x3)))]] [[from(_x0)]] = 0 >= 0 = [[n!6220!6220from(_x0)]] [[s(_x0)]] = 2x0 >= 2x0 = [[n!6220!6220s(_x0)]] [[zWquot(_x0, _x1)]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[n!6220!6220zWquot(_x0, _x1)]] [[activate(n!6220!6220from(_x0))]] = 0 >= 0 = [[from(activate(_x0))]] [[activate(n!6220!6220s(_x0))]] = 2x0 >= 2x0 = [[s(activate(_x0))]] [[activate(n!6220!6220zWquot(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[zWquot(activate(_x0), activate(_x1))]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_4, R_1, minimal, formative) by (P_5, R_1, minimal, formative), where P_5 consists of: activate#(n!6220!6220s(X)) =#> activate#(X) activate#(n!6220!6220zWquot(X, Y)) =#> zWquot#(activate(X), activate(Y)) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_5, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1 * 1 : This graph has the following strongly connected components: P_6: activate#(n!6220!6220s(X)) =#> activate#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_5, R_1, m, f) by (P_6, R_1, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_6, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(activate#) = 1 Thus, we can orient the dependency pairs as follows: nu(activate#(n!6220!6220s(X))) = n!6220!6220s(X) |> X = nu(activate#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_6, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(minus#) = 1 Thus, we can orient the dependency pairs as follows: nu(minus#(s(X), s(Y))) = s(X) |> X = nu(minus#(X, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(sel#) = 1 Thus, we can orient the dependency pairs as follows: nu(sel#(s(X), cons(Y, Z))) = s(X) |> X = nu(sel#(X, activate(Z))) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.