/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) QDPOrderProof [EQUIVALENT, 53 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) QDP (30) UsableRulesProof [EQUIVALENT, 0 ms] (31) QDP (32) QDPSizeChangeProof [EQUIVALENT, 0 ms] (33) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(N) -> SQR(N) SQR(s(X)) -> S(add(sqr(X), dbl(X))) SQR(s(X)) -> ADD(sqr(X), dbl(X)) SQR(s(X)) -> SQR(X) SQR(s(X)) -> DBL(X) DBL(s(X)) -> S(s(dbl(X))) DBL(s(X)) -> S(dbl(X)) DBL(s(X)) -> DBL(X) ADD(s(X), Y) -> S(add(X, Y)) ADD(s(X), Y) -> ADD(X, Y) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) HALF(s(s(X))) -> S(half(X)) HALF(s(s(X))) -> HALF(X) ACTIVATE(n__terms(X)) -> TERMS(activate(X)) ACTIVATE(n__terms(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 10 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(X))) -> HALF(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(X))) -> HALF(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(X))) -> HALF(X) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(s(X), Y) -> ADD(X, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(s(X)) -> DBL(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(s(X)) -> DBL(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DBL(s(X)) -> DBL(X) The graph contains the following edges 1 > 1 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(s(X)) -> SQR(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(s(X)) -> SQR(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SQR(s(X)) -> SQR(X) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__terms(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVATE(x1) = x1 n__terms(x1) = x1 n__s(x1) = x1 n__first(x1, x2) = n__first(x1, x2) FIRST(x1, x2) = x2 activate(x1) = activate(x1) cons(x1, x2) = x2 terms(x1) = x1 s(x1) = x1 first(x1, x2) = first(x1, x2) 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:activate_1 > 0 activate_1 > first_2 > n__first_2 activate_1 > nil and weight map: 0=2 first_2=2 activate_1=0 n__first_2=2 nil=4 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) s(X) -> n__s(X) terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) terms(X) -> n__terms(X) first(0, X) -> nil first(X1, X2) -> n__first(X1, X2) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__terms(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 *ACTIVATE(n__terms(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (33) YES