/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o activate : [o] --> o add : [o * o] --> o cons : [o * o] --> o dbl : [o] --> o first : [o * o] --> o half : [o] --> o n!6220!6220first : [o * o] --> o n!6220!6220s : [o] --> o n!6220!6220terms : [o] --> o nil : [] --> o recip : [o] --> o s : [o] --> o sqr : [o] --> o terms : [o] --> o terms(X) => cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) => 0 sqr(s(X)) => s(add(sqr(X), dbl(X))) dbl(0) => 0 dbl(s(X)) => s(s(dbl(X))) add(0, X) => X add(s(X), Y) => s(add(X, Y)) first(0, X) => nil first(s(X), cons(Y, Z)) => cons(Y, n!6220!6220first(X, activate(Z))) half(0) => 0 half(s(0)) => 0 half(s(s(X))) => s(half(X)) half(dbl(X)) => X terms(X) => n!6220!6220terms(X) s(X) => n!6220!6220s(X) first(X, Y) => n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) => terms(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220first(X, Y)) => first(activate(X), activate(Y)) activate(X) => X We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] terms#(X) =#> sqr#(X) 1] sqr#(s(X)) =#> s#(add(sqr(X), dbl(X))) 2] sqr#(s(X)) =#> add#(sqr(X), dbl(X)) 3] sqr#(s(X)) =#> sqr#(X) 4] sqr#(s(X)) =#> dbl#(X) 5] dbl#(s(X)) =#> s#(s(dbl(X))) 6] dbl#(s(X)) =#> s#(dbl(X)) 7] dbl#(s(X)) =#> dbl#(X) 8] add#(s(X), Y) =#> s#(add(X, Y)) 9] add#(s(X), Y) =#> add#(X, Y) 10] first#(s(X), cons(Y, Z)) =#> activate#(Z) 11] half#(s(s(X))) =#> s#(half(X)) 12] half#(s(s(X))) =#> half#(X) 13] activate#(n!6220!6220terms(X)) =#> terms#(activate(X)) 14] activate#(n!6220!6220terms(X)) =#> activate#(X) 15] activate#(n!6220!6220s(X)) =#> s#(activate(X)) 16] activate#(n!6220!6220s(X)) =#> activate#(X) 17] activate#(n!6220!6220first(X, Y)) =#> first#(activate(X), activate(Y)) 18] activate#(n!6220!6220first(X, Y)) =#> activate#(X) 19] activate#(n!6220!6220first(X, Y)) =#> activate#(Y) Rules R_0: terms(X) => cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) => 0 sqr(s(X)) => s(add(sqr(X), dbl(X))) dbl(0) => 0 dbl(s(X)) => s(s(dbl(X))) add(0, X) => X add(s(X), Y) => s(add(X, Y)) first(0, X) => nil first(s(X), cons(Y, Z)) => cons(Y, n!6220!6220first(X, activate(Z))) half(0) => 0 half(s(0)) => 0 half(s(s(X))) => s(half(X)) half(dbl(X)) => X terms(X) => n!6220!6220terms(X) s(X) => n!6220!6220s(X) first(X, Y) => n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) => terms(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220first(X, Y)) => first(activate(X), activate(Y)) activate(X) => X Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1, 2, 3, 4 * 1 : * 2 : 8, 9 * 3 : 1, 2, 3, 4 * 4 : 5, 6, 7 * 5 : * 6 : * 7 : 5, 6, 7 * 8 : * 9 : 8, 9 * 10 : 13, 14, 15, 16, 17, 18, 19 * 11 : * 12 : 11, 12 * 13 : 0 * 14 : 13, 14, 15, 16, 17, 18, 19 * 15 : * 16 : 13, 14, 15, 16, 17, 18, 19 * 17 : 10 * 18 : 13, 14, 15, 16, 17, 18, 19 * 19 : 13, 14, 15, 16, 17, 18, 19 This graph has the following strongly connected components: P_1: sqr#(s(X)) =#> sqr#(X) P_2: dbl#(s(X)) =#> dbl#(X) P_3: add#(s(X), Y) =#> add#(X, Y) P_4: first#(s(X), cons(Y, Z)) =#> activate#(Z) activate#(n!6220!6220terms(X)) =#> activate#(X) activate#(n!6220!6220s(X)) =#> activate#(X) activate#(n!6220!6220first(X, Y)) =#> first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) =#> activate#(X) activate#(n!6220!6220first(X, Y)) =#> activate#(Y) P_5: half#(s(s(X))) =#> half#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f), (P_3, R_0, m, f), (P_4, R_0, m, f) and (P_5, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative) and (P_5, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(half#) = 1 Thus, we can orient the dependency pairs as follows: nu(half#(s(s(X)))) = s(s(X)) |> X = nu(half#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_5, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). The formative rules of (P_4, R_0) are R_1 ::= terms(X) => cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) => 0 sqr(s(X)) => s(add(sqr(X), dbl(X))) dbl(0) => 0 dbl(s(X)) => s(s(dbl(X))) add(0, X) => X add(s(X), Y) => s(add(X, Y)) first(s(X), cons(Y, Z)) => cons(Y, n!6220!6220first(X, activate(Z))) half(0) => 0 half(s(0)) => 0 half(s(s(X))) => s(half(X)) half(dbl(X)) => X terms(X) => n!6220!6220terms(X) s(X) => n!6220!6220s(X) first(X, Y) => n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) => terms(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220first(X, Y)) => first(activate(X), activate(Y)) activate(X) => X By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_4, R_0, minimal, formative) by (P_4, R_1, minimal, formative). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_4, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_1, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_4, R_1) are: terms(X) => cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) => 0 sqr(s(X)) => s(add(sqr(X), dbl(X))) dbl(0) => 0 dbl(s(X)) => s(s(dbl(X))) add(0, X) => X add(s(X), Y) => s(add(X, Y)) first(s(X), cons(Y, Z)) => cons(Y, n!6220!6220first(X, activate(Z))) terms(X) => n!6220!6220terms(X) s(X) => n!6220!6220s(X) first(X, Y) => n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) => terms(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220first(X, Y)) => first(activate(X), activate(Y)) activate(X) => X It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: first#(s(X), cons(Y, Z)) >? activate#(Z) activate#(n!6220!6220terms(X)) >? activate#(X) activate#(n!6220!6220s(X)) >? activate#(X) activate#(n!6220!6220first(X, Y)) >? first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) >? activate#(X) activate#(n!6220!6220first(X, Y)) >? activate#(Y) terms(X) >= cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) >= 0 sqr(s(X)) >= s(add(sqr(X), dbl(X))) dbl(0) >= 0 dbl(s(X)) >= s(s(dbl(X))) add(0, X) >= X add(s(X), Y) >= s(add(X, Y)) first(s(X), cons(Y, Z)) >= cons(Y, n!6220!6220first(X, activate(Z))) terms(X) >= n!6220!6220terms(X) s(X) >= n!6220!6220s(X) first(X, Y) >= n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) >= terms(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220first(X, Y)) >= first(activate(X), activate(Y)) activate(X) >= X We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: recip(x_1) = recip() This leaves the following ordering requirements: first#(s(X), cons(Y, Z)) >= activate#(Z) activate#(n!6220!6220terms(X)) > activate#(X) activate#(n!6220!6220s(X)) >= activate#(X) activate#(n!6220!6220first(X, Y)) >= first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) >= activate#(X) activate#(n!6220!6220first(X, Y)) >= activate#(Y) terms(X) >= cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) first(s(X), cons(Y, Z)) >= cons(Y, n!6220!6220first(X, activate(Z))) terms(X) >= n!6220!6220terms(X) s(X) >= n!6220!6220s(X) first(X, Y) >= n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) >= terms(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220first(X, Y)) >= first(activate(X), activate(Y)) activate(X) >= X The following interpretation satisfies the requirements: 0 = 0 activate = \y0.y0 activate# = \y0.2y0 add = \y0y1.0 cons = \y0y1.y1 dbl = \y0.0 first = \y0y1.y0 + y1 first# = \y0y1.2y1 n!6220!6220first = \y0y1.y0 + y1 n!6220!6220s = \y0.y0 n!6220!6220terms = \y0.1 + y0 recip = \y0.0 s = \y0.y0 sqr = \y0.0 terms = \y0.1 + y0 Using this interpretation, the requirements translate to: [[first#(s(_x0), cons(_x1, _x2))]] = 2x2 >= 2x2 = [[activate#(_x2)]] [[activate#(n!6220!6220terms(_x0))]] = 2 + 2x0 > 2x0 = [[activate#(_x0)]] [[activate#(n!6220!6220s(_x0))]] = 2x0 >= 2x0 = [[activate#(_x0)]] [[activate#(n!6220!6220first(_x0, _x1))]] = 2x0 + 2x1 >= 2x1 = [[first#(activate(_x0), activate(_x1))]] [[activate#(n!6220!6220first(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 = [[activate#(_x0)]] [[activate#(n!6220!6220first(_x0, _x1))]] = 2x0 + 2x1 >= 2x1 = [[activate#(_x1)]] [[terms(_x0)]] = 1 + x0 >= 1 + x0 = [[cons(recip(sqr(_x0)), n!6220!6220terms(n!6220!6220s(_x0)))]] [[first(s(_x0), cons(_x1, _x2))]] = x0 + x2 >= x0 + x2 = [[cons(_x1, n!6220!6220first(_x0, activate(_x2)))]] [[terms(_x0)]] = 1 + x0 >= 1 + x0 = [[n!6220!6220terms(_x0)]] [[s(_x0)]] = x0 >= x0 = [[n!6220!6220s(_x0)]] [[first(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[n!6220!6220first(_x0, _x1)]] [[activate(n!6220!6220terms(_x0))]] = 1 + x0 >= 1 + x0 = [[terms(activate(_x0))]] [[activate(n!6220!6220s(_x0))]] = x0 >= x0 = [[s(activate(_x0))]] [[activate(n!6220!6220first(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[first(activate(_x0), activate(_x1))]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_4, R_1, minimal, formative) by (P_6, R_1, minimal, formative), where P_6 consists of: first#(s(X), cons(Y, Z)) =#> activate#(Z) activate#(n!6220!6220s(X)) =#> activate#(X) activate#(n!6220!6220first(X, Y)) =#> first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) =#> activate#(X) activate#(n!6220!6220first(X, Y)) =#> activate#(Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_6, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_1, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_6, R_1) are: terms(X) => cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) => 0 sqr(s(X)) => s(add(sqr(X), dbl(X))) dbl(0) => 0 dbl(s(X)) => s(s(dbl(X))) add(0, X) => X add(s(X), Y) => s(add(X, Y)) first(s(X), cons(Y, Z)) => cons(Y, n!6220!6220first(X, activate(Z))) terms(X) => n!6220!6220terms(X) s(X) => n!6220!6220s(X) first(X, Y) => n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) => terms(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220first(X, Y)) => first(activate(X), activate(Y)) activate(X) => X It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: first#(s(X), cons(Y, Z)) >? activate#(Z) activate#(n!6220!6220s(X)) >? activate#(X) activate#(n!6220!6220first(X, Y)) >? first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) >? activate#(X) activate#(n!6220!6220first(X, Y)) >? activate#(Y) terms(X) >= cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) >= 0 sqr(s(X)) >= s(add(sqr(X), dbl(X))) dbl(0) >= 0 dbl(s(X)) >= s(s(dbl(X))) add(0, X) >= X add(s(X), Y) >= s(add(X, Y)) first(s(X), cons(Y, Z)) >= cons(Y, n!6220!6220first(X, activate(Z))) terms(X) >= n!6220!6220terms(X) s(X) >= n!6220!6220s(X) first(X, Y) >= n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) >= terms(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220first(X, Y)) >= first(activate(X), activate(Y)) activate(X) >= X We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: recip(x_1) = recip() This leaves the following ordering requirements: first#(s(X), cons(Y, Z)) >= activate#(Z) activate#(n!6220!6220s(X)) > activate#(X) activate#(n!6220!6220first(X, Y)) >= first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) >= activate#(X) activate#(n!6220!6220first(X, Y)) >= activate#(Y) terms(X) >= cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) first(s(X), cons(Y, Z)) >= cons(Y, n!6220!6220first(X, activate(Z))) terms(X) >= n!6220!6220terms(X) s(X) >= n!6220!6220s(X) first(X, Y) >= n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) >= terms(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220first(X, Y)) >= first(activate(X), activate(Y)) activate(X) >= X The following interpretation satisfies the requirements: 0 = 0 activate = \y0.y0 activate# = \y0.y0 add = \y0y1.0 cons = \y0y1.2y1 dbl = \y0.0 first = \y0y1.y0 + y1 first# = \y0y1.y1 n!6220!6220first = \y0y1.y0 + y1 n!6220!6220s = \y0.1 + 2y0 n!6220!6220terms = \y0.0 recip = \y0.0 s = \y0.1 + 2y0 sqr = \y0.0 terms = \y0.0 Using this interpretation, the requirements translate to: [[first#(s(_x0), cons(_x1, _x2))]] = 2x2 >= x2 = [[activate#(_x2)]] [[activate#(n!6220!6220s(_x0))]] = 1 + 2x0 > x0 = [[activate#(_x0)]] [[activate#(n!6220!6220first(_x0, _x1))]] = x0 + x1 >= x1 = [[first#(activate(_x0), activate(_x1))]] [[activate#(n!6220!6220first(_x0, _x1))]] = x0 + x1 >= x0 = [[activate#(_x0)]] [[activate#(n!6220!6220first(_x0, _x1))]] = x0 + x1 >= x1 = [[activate#(_x1)]] [[terms(_x0)]] = 0 >= 0 = [[cons(recip(sqr(_x0)), n!6220!6220terms(n!6220!6220s(_x0)))]] [[first(s(_x0), cons(_x1, _x2))]] = 1 + 2x0 + 2x2 >= 2x0 + 2x2 = [[cons(_x1, n!6220!6220first(_x0, activate(_x2)))]] [[terms(_x0)]] = 0 >= 0 = [[n!6220!6220terms(_x0)]] [[s(_x0)]] = 1 + 2x0 >= 1 + 2x0 = [[n!6220!6220s(_x0)]] [[first(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[n!6220!6220first(_x0, _x1)]] [[activate(n!6220!6220terms(_x0))]] = 0 >= 0 = [[terms(activate(_x0))]] [[activate(n!6220!6220s(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[s(activate(_x0))]] [[activate(n!6220!6220first(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[first(activate(_x0), activate(_x1))]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_6, R_1, minimal, formative) by (P_7, R_1, minimal, formative), where P_7 consists of: first#(s(X), cons(Y, Z)) =#> activate#(Z) activate#(n!6220!6220first(X, Y)) =#> first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) =#> activate#(X) activate#(n!6220!6220first(X, Y)) =#> activate#(Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_7, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_7, R_1, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_7, R_1) are: terms(X) => cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) => 0 sqr(s(X)) => s(add(sqr(X), dbl(X))) dbl(0) => 0 dbl(s(X)) => s(s(dbl(X))) add(0, X) => X add(s(X), Y) => s(add(X, Y)) first(s(X), cons(Y, Z)) => cons(Y, n!6220!6220first(X, activate(Z))) terms(X) => n!6220!6220terms(X) s(X) => n!6220!6220s(X) first(X, Y) => n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) => terms(activate(X)) activate(n!6220!6220s(X)) => s(activate(X)) activate(n!6220!6220first(X, Y)) => first(activate(X), activate(Y)) activate(X) => X It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: first#(s(X), cons(Y, Z)) >? activate#(Z) activate#(n!6220!6220first(X, Y)) >? first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) >? activate#(X) activate#(n!6220!6220first(X, Y)) >? activate#(Y) terms(X) >= cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) sqr(0) >= 0 sqr(s(X)) >= s(add(sqr(X), dbl(X))) dbl(0) >= 0 dbl(s(X)) >= s(s(dbl(X))) add(0, X) >= X add(s(X), Y) >= s(add(X, Y)) first(s(X), cons(Y, Z)) >= cons(Y, n!6220!6220first(X, activate(Z))) terms(X) >= n!6220!6220terms(X) s(X) >= n!6220!6220s(X) first(X, Y) >= n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) >= terms(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220first(X, Y)) >= first(activate(X), activate(Y)) activate(X) >= X We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: recip(x_1) = recip() This leaves the following ordering requirements: first#(s(X), cons(Y, Z)) >= activate#(Z) activate#(n!6220!6220first(X, Y)) > first#(activate(X), activate(Y)) activate#(n!6220!6220first(X, Y)) >= activate#(X) activate#(n!6220!6220first(X, Y)) >= activate#(Y) terms(X) >= cons(recip(sqr(X)), n!6220!6220terms(n!6220!6220s(X))) first(s(X), cons(Y, Z)) >= cons(Y, n!6220!6220first(X, activate(Z))) terms(X) >= n!6220!6220terms(X) s(X) >= n!6220!6220s(X) first(X, Y) >= n!6220!6220first(X, Y) activate(n!6220!6220terms(X)) >= terms(activate(X)) activate(n!6220!6220s(X)) >= s(activate(X)) activate(n!6220!6220first(X, Y)) >= first(activate(X), activate(Y)) activate(X) >= X The following interpretation satisfies the requirements: 0 = 0 activate = \y0.y0 activate# = \y0.y0 add = \y0y1.1 cons = \y0y1.2y1 dbl = \y0.0 first = \y0y1.2 + y0 + y1 first# = \y0y1.y1 n!6220!6220first = \y0y1.2 + y0 + y1 n!6220!6220s = \y0.2 + 2y0 n!6220!6220terms = \y0.0 recip = \y0.0 s = \y0.2 + 2y0 sqr = \y0.0 terms = \y0.0 Using this interpretation, the requirements translate to: [[first#(s(_x0), cons(_x1, _x2))]] = 2x2 >= x2 = [[activate#(_x2)]] [[activate#(n!6220!6220first(_x0, _x1))]] = 2 + x0 + x1 > x1 = [[first#(activate(_x0), activate(_x1))]] [[activate#(n!6220!6220first(_x0, _x1))]] = 2 + x0 + x1 > x0 = [[activate#(_x0)]] [[activate#(n!6220!6220first(_x0, _x1))]] = 2 + x0 + x1 > x1 = [[activate#(_x1)]] [[terms(_x0)]] = 0 >= 0 = [[cons(recip(sqr(_x0)), n!6220!6220terms(n!6220!6220s(_x0)))]] [[first(s(_x0), cons(_x1, _x2))]] = 4 + 2x0 + 2x2 >= 4 + 2x0 + 2x2 = [[cons(_x1, n!6220!6220first(_x0, activate(_x2)))]] [[terms(_x0)]] = 0 >= 0 = [[n!6220!6220terms(_x0)]] [[s(_x0)]] = 2 + 2x0 >= 2 + 2x0 = [[n!6220!6220s(_x0)]] [[first(_x0, _x1)]] = 2 + x0 + x1 >= 2 + x0 + x1 = [[n!6220!6220first(_x0, _x1)]] [[activate(n!6220!6220terms(_x0))]] = 0 >= 0 = [[terms(activate(_x0))]] [[activate(n!6220!6220s(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[s(activate(_x0))]] [[activate(n!6220!6220first(_x0, _x1))]] = 2 + x0 + x1 >= 2 + x0 + x1 = [[first(activate(_x0), activate(_x1))]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_7, R_1, minimal, formative) by (P_8, R_1, minimal, formative), where P_8 consists of: first#(s(X), cons(Y, Z)) =#> activate#(Z) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_8, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_8, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(add#) = 1 Thus, we can orient the dependency pairs as follows: nu(add#(s(X), Y)) = s(X) |> X = nu(add#(X, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(dbl#) = 1 Thus, we can orient the dependency pairs as follows: nu(dbl#(s(X))) = s(X) |> X = nu(dbl#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(sqr#) = 1 Thus, we can orient the dependency pairs as follows: nu(sqr#(s(X))) = s(X) |> X = nu(sqr#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.