/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR N X X1 X2 Y Z) (RULES activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__terms(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> TERMS(activate(X)) ADD(s(X),Y) -> ADD(X,Y) ADD(s(X),Y) -> S(add(X,Y)) DBL(s(X)) -> DBL(X) DBL(s(X)) -> S(dbl(X)) DBL(s(X)) -> S(s(dbl(X))) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) HALF(s(s(X))) -> HALF(X) HALF(s(s(X))) -> S(half(X)) SQR(s(X)) -> ADD(sqr(X),dbl(X)) SQR(s(X)) -> DBL(X) SQR(s(X)) -> S(add(sqr(X),dbl(X))) SQR(s(X)) -> SQR(X) TERMS(N) -> SQR(N) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__terms(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> TERMS(activate(X)) ADD(s(X),Y) -> ADD(X,Y) ADD(s(X),Y) -> S(add(X,Y)) DBL(s(X)) -> DBL(X) DBL(s(X)) -> S(dbl(X)) DBL(s(X)) -> S(s(dbl(X))) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) HALF(s(s(X))) -> HALF(X) HALF(s(s(X))) -> S(half(X)) SQR(s(X)) -> ADD(sqr(X),dbl(X)) SQR(s(X)) -> DBL(X) SQR(s(X)) -> S(add(sqr(X),dbl(X))) SQR(s(X)) -> SQR(X) TERMS(N) -> SQR(N) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: HALF(s(s(X))) -> HALF(X) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->->Cycle: ->->-> Pairs: DBL(s(X)) -> DBL(X) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->->Cycle: ->->-> Pairs: ADD(s(X),Y) -> ADD(X,Y) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->->Cycle: ->->-> Pairs: SQR(s(X)) -> SQR(X) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) The problem is decomposed in 5 subproblems. Problem 1.1: Subterm Processor: -> Pairs: HALF(s(s(X))) -> HALF(X) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Projection: pi(HALF) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: DBL(s(X)) -> DBL(X) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Projection: pi(DBL) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: ADD(s(X),Y) -> ADD(X,Y) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Projection: pi(ADD) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Subterm Processor: -> Pairs: SQR(s(X)) -> SQR(X) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Projection: pi(SQR) = 1 Problem 1.4: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.5: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 2.X2 + 1 [dbl](X) = 0 [first](X1,X2) = X1 + X2 + 1 [s](X) = X [sqr](X) = 1 [terms](X) = X [0] = 0 [cons](X1,X2) = X2 [n__first](X1,X2) = X1 + X2 + 1 [n__s](X) = X [n__terms](X) = X [nil] = 1 [recip](X) = 2.X + 2 [ACTIVATE](X) = 2.X [FIRST](X1,X2) = X1 + 2.X2 + 1 Problem 1.5: SCC Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) Problem 1.5: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = X1 + 2.X2 [dbl](X) = 0 [first](X1,X2) = 2.X1 + 2.X2 + 2 [s](X) = X [sqr](X) = 2.X [terms](X) = 2.X + 1 [0] = 0 [cons](X1,X2) = X2 [n__first](X1,X2) = 2.X1 + 2.X2 + 2 [n__s](X) = X [n__terms](X) = 2.X + 1 [nil] = 1 [recip](X) = 2 [ACTIVATE](X) = 2.X + 2 [FIRST](X1,X2) = X1 + 2.X2 + 2 Problem 1.5: SCC Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) Problem 1.5: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 2.X2 [dbl](X) = X [first](X1,X2) = 2.X1 + X2 + 2 [s](X) = X [sqr](X) = 2.X [terms](X) = 2.X + 2 [0] = 1 [cons](X1,X2) = X2 [n__first](X1,X2) = 2.X1 + X2 + 2 [n__s](X) = X [n__terms](X) = 2.X + 2 [nil] = 2 [recip](X) = X [ACTIVATE](X) = 2.X + 1 [FIRST](X1,X2) = 2.X1 + 2.X2 + 1 Problem 1.5: SCC Processor: -> Pairs: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) ->->-> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) Problem 1.5: Subterm Processor: -> Pairs: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__terms(X)) -> ACTIVATE(X) -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Projection: pi(ACTIVATE) = 1 Problem 1.5: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__terms(X)) -> terms(activate(X)) activate(X) -> X add(s(X),Y) -> s(add(X,Y)) add(0,X) -> X dbl(s(X)) -> s(s(dbl(X))) dbl(0) -> 0 first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) half(dbl(X)) -> X half(s(s(X))) -> s(half(X)) half(s(0)) -> 0 half(0) -> 0 s(X) -> n__s(X) sqr(s(X)) -> s(add(sqr(X),dbl(X))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite.