/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSToCSRProof [EQUIVALENT, 0 ms] (2) CSR (3) CSRInnermostProof [EQUIVALENT, 0 ms] (4) CSR (5) CSDependencyPairsProof [EQUIVALENT, 0 ms] (6) QCSDP (7) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QCSDP (10) QCSDPSubtermProof [EQUIVALENT, 0 ms] (11) QCSDP (12) PIsEmptyProof [EQUIVALENT, 0 ms] (13) YES (14) QCSDP (15) QCSDPSubtermProof [EQUIVALENT, 0 ms] (16) QCSDP (17) PIsEmptyProof [EQUIVALENT, 0 ms] (18) YES (19) QCSDP (20) QCSDPSubtermProof [EQUIVALENT, 0 ms] (21) QCSDP (22) PIsEmptyProof [EQUIVALENT, 0 ms] (23) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(f(X)) -> mark(cons(X, f(g(X)))) active(g(0)) -> mark(s(0)) active(g(s(X))) -> mark(s(s(g(X)))) active(sel(0, cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(g(X)) -> g(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) g(mark(X)) -> mark(g(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) proper(f(X)) -> f(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) g(ok(X)) -> ok(g(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. ---------------------------------------- (1) QTRSToCSRProof (EQUIVALENT) The following Q TRS is given: Q restricted rewrite system: The TRS R consists of the following rules: active(f(X)) -> mark(cons(X, f(g(X)))) active(g(0)) -> mark(s(0)) active(g(s(X))) -> mark(s(s(g(X)))) active(sel(0, cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(g(X)) -> g(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) g(mark(X)) -> mark(g(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) proper(f(X)) -> f(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) g(ok(X)) -> ok(g(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. Special symbols used for the transformation (see [GM04]): top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 The replacement map contains the following entries: f: {1} cons: {1} g: {1} 0: empty set s: {1} sel: {1, 2} The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound). ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The replacement map contains the following entries: f: {1} cons: {1} g: {1} 0: empty set s: {1} sel: {1, 2} ---------------------------------------- (3) CSRInnermostProof (EQUIVALENT) The CSR is orthogonal. By [CS_Inn] we can switch to innermost. ---------------------------------------- (4) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The replacement map contains the following entries: f: {1} cons: {1} g: {1} 0: empty set s: {1} sel: {1, 2} Innermost Strategy. ---------------------------------------- (5) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (6) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {f_1, g_1, s_1, sel_2, G_1, SEL_2, F_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The symbols in {U_1} are not replacing on any position. The ordinary context-sensitive dependency pairs DP_o are: G(s(X)) -> G(X) SEL(s(X), cons(Y, Z)) -> SEL(X, Z) The collapsing dependency pairs are DP_c: SEL(s(X), cons(Y, Z)) -> Z The hidden terms of R are: f(g(x0)) g(x0) Every hiding context is built from: aprove.DPFramework.CSDPProblem.QCSDPProblem$1@7013bbf8 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@78dbeafa Hence, the new unhiding pairs DP_u are : SEL(s(X), cons(Y, Z)) -> U(Z) U(g(x_0)) -> U(x_0) U(f(x_0)) -> U(x_0) U(f(g(x0))) -> F(g(x0)) U(g(x0)) -> G(x0) The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The set Q consists of the following terms: f(x0) g(0) g(s(x0)) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (7) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 3 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {f_1, g_1, s_1, sel_2, G_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: G(s(X)) -> G(X) The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The set Q consists of the following terms: f(x0) g(0) g(s(x0)) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (10) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. G(s(X)) -> G(X) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. G(x1) = x1 Subterm Order ---------------------------------------- (11) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The set Q consists of the following terms: f(x0) g(0) g(s(x0)) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (12) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The symbols in {U_1} are not replacing on any position. The TRS P consists of the following rules: U(g(x_0)) -> U(x_0) U(f(x_0)) -> U(x_0) The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The set Q consists of the following terms: f(x0) g(0) g(s(x0)) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (15) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. U(g(x_0)) -> U(x_0) U(f(x_0)) -> U(x_0) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. U(x1) = x1 Subterm Order ---------------------------------------- (16) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The set Q consists of the following terms: f(x0) g(0) g(s(x0)) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (17) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {f_1, g_1, s_1, sel_2, SEL_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: SEL(s(X), cons(Y, Z)) -> SEL(X, Z) The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The set Q consists of the following terms: f(x0) g(0) g(s(x0)) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (20) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. SEL(s(X), cons(Y, Z)) -> SEL(X, Z) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. SEL(x1, x2) = x1 Subterm Order ---------------------------------------- (21) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: f(X) -> cons(X, f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, Z) The set Q consists of the following terms: f(x0) g(0) g(s(x0)) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (22) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (23) YES