/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 35 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 122 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) UsableRulesProof [EQUIVALENT, 0 ms] (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(dbl(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__TERMS(N) -> A__SQR(mark(N)) A__TERMS(N) -> MARK(N) A__ADD(0, X) -> MARK(X) A__FIRST(s(X), cons(Y, Z)) -> MARK(Y) MARK(terms(X)) -> A__TERMS(mark(X)) MARK(terms(X)) -> MARK(X) MARK(sqr(X)) -> A__SQR(mark(X)) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> A__DBL(mark(X)) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> A__FIRST(mark(X1), mark(X2)) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> MARK(X) The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(dbl(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A__TERMS(N) -> MARK(N) MARK(terms(X)) -> A__TERMS(mark(X)) MARK(terms(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) A__ADD(0, X) -> MARK(X) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> A__FIRST(mark(X1), mark(X2)) A__FIRST(s(X), cons(Y, Z)) -> MARK(Y) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> MARK(X) The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(dbl(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__TERMS(N) -> MARK(N) MARK(terms(X)) -> A__TERMS(mark(X)) MARK(terms(X)) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) A__ADD(0, X) -> MARK(X) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) A__FIRST(s(X), cons(Y, Z)) -> MARK(Y) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__ADD_2(x_1, x_2) ) = 2x_2 + 1 POL( A__FIRST_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( A__TERMS_1(x_1) ) = 2x_1 + 1 POL( mark_1(x_1) ) = x_1 POL( terms_1(x_1) ) = 2x_1 + 1 POL( a__terms_1(x_1) ) = 2x_1 + 1 POL( sqr_1(x_1) ) = x_1 POL( a__sqr_1(x_1) ) = x_1 POL( add_2(x_1, x_2) ) = 2x_1 + 2x_2 + 1 POL( a__add_2(x_1, x_2) ) = 2x_1 + 2x_2 + 1 POL( 0 ) = 0 POL( dbl_1(x_1) ) = x_1 POL( a__dbl_1(x_1) ) = x_1 POL( first_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( a__first_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( cons_2(x_1, x_2) ) = x_1 + 1 POL( recip_1(x_1) ) = x_1 POL( s_1(x_1) ) = 2 POL( nil ) = 0 POL( MARK_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) a__add(0, X) -> mark(X) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(0) -> 0 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__sqr(X) -> sqr(X) a__add(s(X), Y) -> s(add(X, Y)) a__add(X1, X2) -> add(X1, X2) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(dbl(X))) a__dbl(X) -> dbl(X) a__first(0, X) -> nil a__first(X1, X2) -> first(X1, X2) a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(sqr(X)) -> MARK(X) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> A__FIRST(mark(X1), mark(X2)) MARK(recip(X)) -> MARK(X) The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(dbl(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(dbl(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) MARK(recip(X)) -> MARK(X) The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(dbl(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(dbl(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) MARK(recip(X)) -> MARK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(dbl(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(sqr(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(recip(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (12) YES