/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRS Reverse [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 12 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] (16) YES (17) QDP (18) UsableRulesProof [EQUIVALENT, 0 ms] (19) QDP (20) QDPSizeChangeProof [EQUIVALENT, 0 ms] (21) YES (22) QDP (23) UsableRulesProof [EQUIVALENT, 0 ms] (24) QDP (25) QDPOrderProof [EQUIVALENT, 23 ms] (26) QDP (27) DependencyGraphProof [EQUIVALENT, 0 ms] (28) AND (29) QDP (30) MRRProof [EQUIVALENT, 9 ms] (31) QDP (32) PisEmptyProof [EQUIVALENT, 0 ms] (33) YES (34) QDP (35) MRRProof [EQUIVALENT, 7 ms] (36) QDP (37) PisEmptyProof [EQUIVALENT, 0 ms] (38) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(g(X)) -> mark(h(X)) active(c) -> mark(d) active(h(d)) -> mark(g(c)) proper(g(X)) -> g(proper(X)) proper(h(X)) -> h(proper(X)) proper(c) -> ok(c) proper(d) -> ok(d) g(ok(X)) -> ok(g(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. ---------------------------------------- (1) QTRS Reverse (EQUIVALENT) We applied the QTRS Reverse Processor [REVERSE]. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(active(X)) -> h(mark(X)) c'(active(x)) -> d'(mark(x)) d'(h(active(x))) -> c'(g(mark(x))) g(proper(X)) -> proper(g(X)) h(proper(X)) -> proper(h(X)) c'(proper(x)) -> c'(ok(x)) d'(proper(x)) -> d'(ok(x)) ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) mark(top(X)) -> proper(top(X)) ok(top(X)) -> active(top(X)) Q is empty. ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: G(active(X)) -> H(mark(X)) G(active(X)) -> MARK(X) C'(active(x)) -> D'(mark(x)) C'(active(x)) -> MARK(x) D'(h(active(x))) -> C'(g(mark(x))) D'(h(active(x))) -> G(mark(x)) D'(h(active(x))) -> MARK(x) G(proper(X)) -> G(X) H(proper(X)) -> H(X) C'(proper(x)) -> C'(ok(x)) C'(proper(x)) -> OK(x) D'(proper(x)) -> D'(ok(x)) D'(proper(x)) -> OK(x) OK(g(X)) -> G(ok(X)) OK(g(X)) -> OK(X) OK(h(X)) -> H(ok(X)) OK(h(X)) -> OK(X) The TRS R consists of the following rules: g(active(X)) -> h(mark(X)) c'(active(x)) -> d'(mark(x)) d'(h(active(x))) -> c'(g(mark(x))) g(proper(X)) -> proper(g(X)) h(proper(X)) -> proper(h(X)) c'(proper(x)) -> c'(ok(x)) d'(proper(x)) -> d'(ok(x)) ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) mark(top(X)) -> proper(top(X)) ok(top(X)) -> active(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 9 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: H(proper(X)) -> H(X) The TRS R consists of the following rules: g(active(X)) -> h(mark(X)) c'(active(x)) -> d'(mark(x)) d'(h(active(x))) -> c'(g(mark(x))) g(proper(X)) -> proper(g(X)) h(proper(X)) -> proper(h(X)) c'(proper(x)) -> c'(ok(x)) d'(proper(x)) -> d'(ok(x)) ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) mark(top(X)) -> proper(top(X)) ok(top(X)) -> active(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: H(proper(X)) -> H(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *H(proper(X)) -> H(X) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: G(proper(X)) -> G(X) The TRS R consists of the following rules: g(active(X)) -> h(mark(X)) c'(active(x)) -> d'(mark(x)) d'(h(active(x))) -> c'(g(mark(x))) g(proper(X)) -> proper(g(X)) h(proper(X)) -> proper(h(X)) c'(proper(x)) -> c'(ok(x)) d'(proper(x)) -> d'(ok(x)) ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) mark(top(X)) -> proper(top(X)) ok(top(X)) -> active(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: G(proper(X)) -> G(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *G(proper(X)) -> G(X) The graph contains the following edges 1 > 1 ---------------------------------------- (16) YES ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: OK(h(X)) -> OK(X) OK(g(X)) -> OK(X) The TRS R consists of the following rules: g(active(X)) -> h(mark(X)) c'(active(x)) -> d'(mark(x)) d'(h(active(x))) -> c'(g(mark(x))) g(proper(X)) -> proper(g(X)) h(proper(X)) -> proper(h(X)) c'(proper(x)) -> c'(ok(x)) d'(proper(x)) -> d'(ok(x)) ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) mark(top(X)) -> proper(top(X)) ok(top(X)) -> active(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: OK(h(X)) -> OK(X) OK(g(X)) -> OK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *OK(h(X)) -> OK(X) The graph contains the following edges 1 > 1 *OK(g(X)) -> OK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (21) YES ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: D'(h(active(x))) -> C'(g(mark(x))) C'(active(x)) -> D'(mark(x)) D'(proper(x)) -> D'(ok(x)) C'(proper(x)) -> C'(ok(x)) The TRS R consists of the following rules: g(active(X)) -> h(mark(X)) c'(active(x)) -> d'(mark(x)) d'(h(active(x))) -> c'(g(mark(x))) g(proper(X)) -> proper(g(X)) h(proper(X)) -> proper(h(X)) c'(proper(x)) -> c'(ok(x)) d'(proper(x)) -> d'(ok(x)) ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) mark(top(X)) -> proper(top(X)) ok(top(X)) -> active(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: D'(h(active(x))) -> C'(g(mark(x))) C'(active(x)) -> D'(mark(x)) D'(proper(x)) -> D'(ok(x)) C'(proper(x)) -> C'(ok(x)) The TRS R consists of the following rules: ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) ok(top(X)) -> active(top(X)) h(proper(X)) -> proper(h(X)) g(active(X)) -> h(mark(X)) g(proper(X)) -> proper(g(X)) mark(top(X)) -> proper(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. C'(active(x)) -> D'(mark(x)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(C'(x_1)) = x_1 POL(D'(x_1)) = 0 POL(active(x_1)) = 1 POL(g(x_1)) = 0 POL(h(x_1)) = 0 POL(mark(x_1)) = 0 POL(ok(x_1)) = x_1 POL(proper(x_1)) = x_1 POL(top(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: g(active(X)) -> h(mark(X)) g(proper(X)) -> proper(g(X)) ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) ok(top(X)) -> active(top(X)) h(proper(X)) -> proper(h(X)) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: D'(h(active(x))) -> C'(g(mark(x))) D'(proper(x)) -> D'(ok(x)) C'(proper(x)) -> C'(ok(x)) The TRS R consists of the following rules: ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) ok(top(X)) -> active(top(X)) h(proper(X)) -> proper(h(X)) g(active(X)) -> h(mark(X)) g(proper(X)) -> proper(g(X)) mark(top(X)) -> proper(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (28) Complex Obligation (AND) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: C'(proper(x)) -> C'(ok(x)) The TRS R consists of the following rules: ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) ok(top(X)) -> active(top(X)) h(proper(X)) -> proper(h(X)) g(active(X)) -> h(mark(X)) g(proper(X)) -> proper(g(X)) mark(top(X)) -> proper(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: C'(proper(x)) -> C'(ok(x)) Strictly oriented rules of the TRS R: ok(g(X)) -> g(ok(X)) g(proper(X)) -> proper(g(X)) Used ordering: Polynomial interpretation [POLO]: POL(C'(x_1)) = 3*x_1 POL(active(x_1)) = 2*x_1 POL(g(x_1)) = 1 + 3*x_1 POL(h(x_1)) = x_1 POL(mark(x_1)) = 1 + 2*x_1 POL(ok(x_1)) = 2*x_1 POL(proper(x_1)) = 1 + 2*x_1 POL(top(x_1)) = 2*x_1 ---------------------------------------- (31) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: ok(h(X)) -> h(ok(X)) ok(top(X)) -> active(top(X)) h(proper(X)) -> proper(h(X)) g(active(X)) -> h(mark(X)) mark(top(X)) -> proper(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (33) YES ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: D'(proper(x)) -> D'(ok(x)) The TRS R consists of the following rules: ok(g(X)) -> g(ok(X)) ok(h(X)) -> h(ok(X)) ok(top(X)) -> active(top(X)) h(proper(X)) -> proper(h(X)) g(active(X)) -> h(mark(X)) g(proper(X)) -> proper(g(X)) mark(top(X)) -> proper(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: D'(proper(x)) -> D'(ok(x)) Strictly oriented rules of the TRS R: ok(g(X)) -> g(ok(X)) g(proper(X)) -> proper(g(X)) Used ordering: Polynomial interpretation [POLO]: POL(D'(x_1)) = 3*x_1 POL(active(x_1)) = 2*x_1 POL(g(x_1)) = 1 + 3*x_1 POL(h(x_1)) = x_1 POL(mark(x_1)) = 1 + 2*x_1 POL(ok(x_1)) = 2*x_1 POL(proper(x_1)) = 1 + 2*x_1 POL(top(x_1)) = 2*x_1 ---------------------------------------- (36) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: ok(h(X)) -> h(ok(X)) ok(top(X)) -> active(top(X)) h(proper(X)) -> proper(h(X)) g(active(X)) -> h(mark(X)) mark(top(X)) -> proper(top(X)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (38) YES