/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 74 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 52 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: FST(s(X), cons(Y, Z)) -> ACTIVATE(X) FST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ADD(s(X), Y) -> S(n__add(activate(X), Y)) ADD(s(X), Y) -> ACTIVATE(X) LEN(cons(X, Z)) -> S(n__len(activate(Z))) LEN(cons(X, Z)) -> ACTIVATE(Z) ACTIVATE(n__fst(X1, X2)) -> FST(activate(X1), activate(X2)) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__len(X)) -> LEN(activate(X)) ACTIVATE(n__len(X)) -> ACTIVATE(X) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__fst(X1, X2)) -> FST(activate(X1), activate(X2)) FST(s(X), cons(Y, Z)) -> ACTIVATE(X) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ADD(s(X), Y) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__len(X)) -> LEN(activate(X)) LEN(cons(X, Z)) -> ACTIVATE(Z) ACTIVATE(n__len(X)) -> ACTIVATE(X) FST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ADD(s(X), Y) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ADD_2(x_1, x_2) ) = 2x_1 + 2 POL( FST_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( LEN_1(x_1) ) = 2x_1 POL( activate_1(x_1) ) = x_1 POL( n__fst_2(x_1, x_2) ) = 2x_1 + x_2 POL( fst_2(x_1, x_2) ) = 2x_1 + x_2 POL( n__from_1(x_1) ) = 2x_1 + 2 POL( from_1(x_1) ) = 2x_1 + 2 POL( n__s_1(x_1) ) = x_1 POL( s_1(x_1) ) = x_1 POL( n__add_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( add_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( n__len_1(x_1) ) = x_1 POL( len_1(x_1) ) = x_1 POL( cons_2(x_1, x_2) ) = x_2 POL( 0 ) = 2 POL( nil ) = 2 POL( ACTIVATE_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) fst(0, Z) -> nil fst(X1, X2) -> n__fst(X1, X2) add(0, X) -> X add(X1, X2) -> n__add(X1, X2) len(nil) -> 0 len(X) -> n__len(X) len(cons(X, Z)) -> s(n__len(activate(Z))) s(X) -> n__s(X) add(s(X), Y) -> s(n__add(activate(X), Y)) fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__fst(X1, X2)) -> FST(activate(X1), activate(X2)) FST(s(X), cons(Y, Z)) -> ACTIVATE(X) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__len(X)) -> LEN(activate(X)) LEN(cons(X, Z)) -> ACTIVATE(Z) ACTIVATE(n__len(X)) -> ACTIVATE(X) FST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__fst(X1, X2)) -> FST(activate(X1), activate(X2)) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X2) LEN(cons(X, Z)) -> ACTIVATE(Z) ACTIVATE(n__len(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( FST_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( LEN_1(x_1) ) = x_1 + 2 POL( activate_1(x_1) ) = x_1 POL( n__fst_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( fst_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( n__from_1(x_1) ) = max{0, -2} POL( from_1(x_1) ) = max{0, -2} POL( n__s_1(x_1) ) = x_1 POL( s_1(x_1) ) = x_1 POL( n__add_2(x_1, x_2) ) = x_2 POL( add_2(x_1, x_2) ) = x_2 POL( n__len_1(x_1) ) = 2x_1 + 2 POL( len_1(x_1) ) = 2x_1 + 2 POL( cons_2(x_1, x_2) ) = x_2 POL( 0 ) = 2 POL( nil ) = 2 POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) fst(0, Z) -> nil fst(X1, X2) -> n__fst(X1, X2) add(0, X) -> X add(X1, X2) -> n__add(X1, X2) len(nil) -> 0 len(X) -> n__len(X) len(cons(X, Z)) -> s(n__len(activate(Z))) s(X) -> n__s(X) add(s(X), Y) -> s(n__add(activate(X), Y)) fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: FST(s(X), cons(Y, Z)) -> ACTIVATE(X) ACTIVATE(n__len(X)) -> LEN(activate(X)) FST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. ---------------------------------------- (10) TRUE