/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 25 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) NonTerminationLoopProof [COMPLETE, 84 ms] (16) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(a, b, X) -> A__F(mark(X), X, mark(X)) A__F(a, b, X) -> MARK(X) MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) MARK(c) -> A__C The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(a, b, X) -> MARK(X) MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) A__F(a, b, X) -> A__F(mark(X), X, mark(X)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A__F(x_1, x_2, x_3)) = [[-I]] + [[0A]] * x_1 + [[-I]] * x_2 + [[0A]] * x_3 >>> <<< POL(a) = [[0A]] >>> <<< POL(b) = [[2A]] >>> <<< POL(MARK(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(f(x_1, x_2, x_3)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 + [[1A]] * x_3 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(a__f(x_1, x_2, x_3)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 + [[1A]] * x_3 >>> <<< POL(c) = [[3A]] >>> <<< POL(a__c) = [[3A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b a__c -> c ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(a, b, X) -> MARK(X) A__F(a, b, X) -> A__F(mark(X), X, mark(X)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> MARK(X3) MARK(f(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> MARK(X3) MARK(f(X1, X2, X3)) -> MARK(X1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(f(X1, X2, X3)) -> MARK(X3) The graph contains the following edges 1 > 1 *MARK(f(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(a, b, X) -> A__F(mark(X), X, mark(X)) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = A__F(mark(mark(a__c)), mark(a__c), mark(mark(a__c))) evaluates to t =A__F(mark(mark(a__c)), mark(a__c), mark(mark(a__c))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence A__F(mark(mark(a__c)), mark(a__c), mark(mark(a__c))) -> A__F(mark(mark(a__c)), mark(a__c), mark(mark(c))) with rule a__c -> c at position [2,0,0] and matcher [ ] A__F(mark(mark(a__c)), mark(a__c), mark(mark(c))) -> A__F(mark(mark(a__c)), mark(a__c), mark(a__c)) with rule mark(c) -> a__c at position [2,0] and matcher [ ] A__F(mark(mark(a__c)), mark(a__c), mark(a__c)) -> A__F(mark(mark(a__c)), mark(a__c), mark(c)) with rule a__c -> c at position [2,0] and matcher [ ] A__F(mark(mark(a__c)), mark(a__c), mark(c)) -> A__F(mark(mark(a__c)), mark(a__c), a__c) with rule mark(c) -> a__c at position [2] and matcher [ ] A__F(mark(mark(a__c)), mark(a__c), a__c) -> A__F(mark(mark(a__c)), mark(b), a__c) with rule a__c -> b at position [1,0] and matcher [ ] A__F(mark(mark(a__c)), mark(b), a__c) -> A__F(mark(mark(a__c)), b, a__c) with rule mark(b) -> b at position [1] and matcher [ ] A__F(mark(mark(a__c)), b, a__c) -> A__F(mark(mark(a)), b, a__c) with rule a__c -> a at position [0,0,0] and matcher [ ] A__F(mark(mark(a)), b, a__c) -> A__F(mark(a), b, a__c) with rule mark(a) -> a at position [0,0] and matcher [ ] A__F(mark(a), b, a__c) -> A__F(a, b, a__c) with rule mark(a) -> a at position [0] and matcher [ ] A__F(a, b, a__c) -> A__F(mark(a__c), a__c, mark(a__c)) with rule A__F(a, b, X') -> A__F(mark(X'), X', mark(X')) at position [] and matcher [X' / a__c] A__F(mark(a__c), a__c, mark(a__c)) -> A__F(mark(a__c), b, mark(a__c)) with rule a__c -> b at position [1] and matcher [ ] A__F(mark(a__c), b, mark(a__c)) -> A__F(mark(a), b, mark(a__c)) with rule a__c -> a at position [0,0] and matcher [ ] A__F(mark(a), b, mark(a__c)) -> A__F(a, b, mark(a__c)) with rule mark(a) -> a at position [0] and matcher [ ] A__F(a, b, mark(a__c)) -> A__F(mark(mark(a__c)), mark(a__c), mark(mark(a__c))) with rule A__F(a, b, X) -> A__F(mark(X), X, mark(X)) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (16) NO