/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 36 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPOrderProof [EQUIVALENT, 128 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U12(tt) -> tt a__U21(tt) -> tt a__U31(tt, N) -> mark(N) a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__plus(N, 0) -> a__U31(a__isNat(N), N) a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2) -> U11(X1, X2) a__U12(X) -> U12(X) a__isNat(X) -> isNat(X) a__U21(X) -> U21(X) a__U31(X1, X2) -> U31(X1, X2) a__U41(X1, X2, X3) -> U41(X1, X2, X3) a__U42(X1, X2, X3) -> U42(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__U11(tt, V2) -> A__U12(a__isNat(V2)) A__U11(tt, V2) -> A__ISNAT(V2) A__U31(tt, N) -> MARK(N) A__U41(tt, M, N) -> A__U42(a__isNat(N), M, N) A__U41(tt, M, N) -> A__ISNAT(N) A__U42(tt, M, N) -> A__PLUS(mark(N), mark(M)) A__U42(tt, M, N) -> MARK(N) A__U42(tt, M, N) -> MARK(M) A__ISNAT(plus(V1, V2)) -> A__U11(a__isNat(V1), V2) A__ISNAT(plus(V1, V2)) -> A__ISNAT(V1) A__ISNAT(s(V1)) -> A__U21(a__isNat(V1)) A__ISNAT(s(V1)) -> A__ISNAT(V1) A__PLUS(N, 0) -> A__U31(a__isNat(N), N) A__PLUS(N, 0) -> A__ISNAT(N) A__PLUS(N, s(M)) -> A__U41(a__isNat(M), M, N) A__PLUS(N, s(M)) -> A__ISNAT(M) MARK(U11(X1, X2)) -> A__U11(mark(X1), X2) MARK(U11(X1, X2)) -> MARK(X1) MARK(U12(X)) -> A__U12(mark(X)) MARK(U12(X)) -> MARK(X) MARK(isNat(X)) -> A__ISNAT(X) MARK(U21(X)) -> A__U21(mark(X)) MARK(U21(X)) -> MARK(X) MARK(U31(X1, X2)) -> A__U31(mark(X1), X2) MARK(U31(X1, X2)) -> MARK(X1) MARK(U41(X1, X2, X3)) -> A__U41(mark(X1), X2, X3) MARK(U41(X1, X2, X3)) -> MARK(X1) MARK(U42(X1, X2, X3)) -> A__U42(mark(X1), X2, X3) MARK(U42(X1, X2, X3)) -> MARK(X1) MARK(plus(X1, X2)) -> A__PLUS(mark(X1), mark(X2)) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U12(tt) -> tt a__U21(tt) -> tt a__U31(tt, N) -> mark(N) a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__plus(N, 0) -> a__U31(a__isNat(N), N) a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2) -> U11(X1, X2) a__U12(X) -> U12(X) a__isNat(X) -> isNat(X) a__U21(X) -> U21(X) a__U31(X1, X2) -> U31(X1, X2) a__U41(X1, X2, X3) -> U41(X1, X2, X3) a__U42(X1, X2, X3) -> U42(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: A__U11(tt, V2) -> A__ISNAT(V2) A__ISNAT(plus(V1, V2)) -> A__U11(a__isNat(V1), V2) A__ISNAT(plus(V1, V2)) -> A__ISNAT(V1) A__ISNAT(s(V1)) -> A__ISNAT(V1) The TRS R consists of the following rules: a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U12(tt) -> tt a__U21(tt) -> tt a__U31(tt, N) -> mark(N) a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__plus(N, 0) -> a__U31(a__isNat(N), N) a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2) -> U11(X1, X2) a__U12(X) -> U12(X) a__isNat(X) -> isNat(X) a__U21(X) -> U21(X) a__U31(X1, X2) -> U31(X1, X2) a__U41(X1, X2, X3) -> U41(X1, X2, X3) a__U42(X1, X2, X3) -> U42(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: A__U11(tt, V2) -> A__ISNAT(V2) A__ISNAT(plus(V1, V2)) -> A__U11(a__isNat(V1), V2) A__ISNAT(plus(V1, V2)) -> A__ISNAT(V1) A__ISNAT(s(V1)) -> A__ISNAT(V1) The TRS R consists of the following rules: a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__isNat(X) -> isNat(X) a__U21(tt) -> tt a__U21(X) -> U21(X) a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U11(X1, X2) -> U11(X1, X2) a__U12(tt) -> tt a__U12(X) -> U12(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A__ISNAT(plus(V1, V2)) -> A__U11(a__isNat(V1), V2) The graph contains the following edges 1 > 2 *A__U11(tt, V2) -> A__ISNAT(V2) The graph contains the following edges 2 >= 1 *A__ISNAT(plus(V1, V2)) -> A__ISNAT(V1) The graph contains the following edges 1 > 1 *A__ISNAT(s(V1)) -> A__ISNAT(V1) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U11(X1, X2)) -> MARK(X1) MARK(U12(X)) -> MARK(X) MARK(U21(X)) -> MARK(X) MARK(U31(X1, X2)) -> A__U31(mark(X1), X2) A__U31(tt, N) -> MARK(N) MARK(U31(X1, X2)) -> MARK(X1) MARK(U41(X1, X2, X3)) -> A__U41(mark(X1), X2, X3) A__U41(tt, M, N) -> A__U42(a__isNat(N), M, N) A__U42(tt, M, N) -> A__PLUS(mark(N), mark(M)) A__PLUS(N, 0) -> A__U31(a__isNat(N), N) A__PLUS(N, s(M)) -> A__U41(a__isNat(M), M, N) A__U42(tt, M, N) -> MARK(N) MARK(U41(X1, X2, X3)) -> MARK(X1) MARK(U42(X1, X2, X3)) -> A__U42(mark(X1), X2, X3) A__U42(tt, M, N) -> MARK(M) MARK(U42(X1, X2, X3)) -> MARK(X1) MARK(plus(X1, X2)) -> A__PLUS(mark(X1), mark(X2)) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U12(tt) -> tt a__U21(tt) -> tt a__U31(tt, N) -> mark(N) a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__plus(N, 0) -> a__U31(a__isNat(N), N) a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2) -> U11(X1, X2) a__U12(X) -> U12(X) a__isNat(X) -> isNat(X) a__U21(X) -> U21(X) a__U31(X1, X2) -> U31(X1, X2) a__U41(X1, X2, X3) -> U41(X1, X2, X3) a__U42(X1, X2, X3) -> U42(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(U31(X1, X2)) -> A__U31(mark(X1), X2) A__U31(tt, N) -> MARK(N) MARK(U31(X1, X2)) -> MARK(X1) MARK(U41(X1, X2, X3)) -> A__U41(mark(X1), X2, X3) A__PLUS(N, s(M)) -> A__U41(a__isNat(M), M, N) MARK(U41(X1, X2, X3)) -> MARK(X1) MARK(U42(X1, X2, X3)) -> A__U42(mark(X1), X2, X3) MARK(U42(X1, X2, X3)) -> MARK(X1) MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__PLUS_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( A__U31_2(x_1, x_2) ) = 2x_2 + 2 POL( A__U41_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 POL( A__U42_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 POL( mark_1(x_1) ) = x_1 POL( U11_2(x_1, x_2) ) = 2x_1 POL( a__U11_2(x_1, x_2) ) = 2x_1 POL( U12_1(x_1) ) = 2x_1 POL( a__U12_1(x_1) ) = 2x_1 POL( isNat_1(x_1) ) = 0 POL( a__isNat_1(x_1) ) = 0 POL( U21_1(x_1) ) = 2x_1 POL( a__U21_1(x_1) ) = 2x_1 POL( U31_2(x_1, x_2) ) = x_1 + x_2 + 2 POL( a__U31_2(x_1, x_2) ) = x_1 + x_2 + 2 POL( tt ) = 0 POL( plus_2(x_1, x_2) ) = x_1 + 2x_2 POL( a__plus_2(x_1, x_2) ) = x_1 + 2x_2 POL( 0 ) = 1 POL( U41_3(x_1, ..., x_3) ) = 2x_1 + 2x_2 + x_3 + 2 POL( a__U41_3(x_1, ..., x_3) ) = 2x_1 + 2x_2 + x_3 + 2 POL( U42_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 2 POL( a__U42_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 2 POL( s_1(x_1) ) = x_1 + 2 POL( MARK_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) a__U31(tt, N) -> mark(N) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) a__plus(N, 0) -> a__U31(a__isNat(N), N) mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__isNat(X) -> isNat(X) a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__plus(X1, X2) -> plus(X1, X2) a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U11(X1, X2) -> U11(X1, X2) a__U12(tt) -> tt a__U12(X) -> U12(X) a__U21(tt) -> tt a__U21(X) -> U21(X) a__U31(X1, X2) -> U31(X1, X2) a__U41(X1, X2, X3) -> U41(X1, X2, X3) a__U42(X1, X2, X3) -> U42(X1, X2, X3) a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U11(X1, X2)) -> MARK(X1) MARK(U12(X)) -> MARK(X) MARK(U21(X)) -> MARK(X) A__U41(tt, M, N) -> A__U42(a__isNat(N), M, N) A__U42(tt, M, N) -> A__PLUS(mark(N), mark(M)) A__PLUS(N, 0) -> A__U31(a__isNat(N), N) A__U42(tt, M, N) -> MARK(N) A__U42(tt, M, N) -> MARK(M) MARK(plus(X1, X2)) -> A__PLUS(mark(X1), mark(X2)) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U12(tt) -> tt a__U21(tt) -> tt a__U31(tt, N) -> mark(N) a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__plus(N, 0) -> a__U31(a__isNat(N), N) a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2) -> U11(X1, X2) a__U12(X) -> U12(X) a__isNat(X) -> isNat(X) a__U21(X) -> U21(X) a__U31(X1, X2) -> U31(X1, X2) a__U41(X1, X2, X3) -> U41(X1, X2, X3) a__U42(X1, X2, X3) -> U42(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U12(X)) -> MARK(X) MARK(U11(X1, X2)) -> MARK(X1) MARK(U21(X)) -> MARK(X) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__U11(tt, V2) -> a__U12(a__isNat(V2)) a__U12(tt) -> tt a__U21(tt) -> tt a__U31(tt, N) -> mark(N) a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__plus(N, 0) -> a__U31(a__isNat(N), N) a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2) -> U11(X1, X2) a__U12(X) -> U12(X) a__isNat(X) -> isNat(X) a__U21(X) -> U21(X) a__U31(X1, X2) -> U31(X1, X2) a__U41(X1, X2, X3) -> U41(X1, X2, X3) a__U42(X1, X2, X3) -> U42(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U12(X)) -> MARK(X) MARK(U11(X1, X2)) -> MARK(X1) MARK(U21(X)) -> MARK(X) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(U12(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(U11(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U21(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(plus(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(plus(X1, X2)) -> MARK(X2) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES