/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o U11 : [o * o] --> o U12 : [o] --> o U21 : [o] --> o U31 : [o * o] --> o U41 : [o * o * o] --> o U42 : [o * o * o] --> o a!6220!6220U11 : [o * o] --> o a!6220!6220U12 : [o] --> o a!6220!6220U21 : [o] --> o a!6220!6220U31 : [o * o] --> o a!6220!6220U41 : [o * o * o] --> o a!6220!6220U42 : [o * o * o] --> o a!6220!6220isNat : [o] --> o a!6220!6220plus : [o * o] --> o isNat : [o] --> o mark : [o] --> o plus : [o * o] --> o s : [o] --> o tt : [] --> o a!6220!6220U11(tt, X) => a!6220!6220U12(a!6220!6220isNat(X)) a!6220!6220U12(tt) => tt a!6220!6220U21(tt) => tt a!6220!6220U31(tt, X) => mark(X) a!6220!6220U41(tt, X, Y) => a!6220!6220U42(a!6220!6220isNat(Y), X, Y) a!6220!6220U42(tt, X, Y) => s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220isNat(0) => tt a!6220!6220isNat(plus(X, Y)) => a!6220!6220U11(a!6220!6220isNat(X), Y) a!6220!6220isNat(s(X)) => a!6220!6220U21(a!6220!6220isNat(X)) a!6220!6220plus(X, 0) => a!6220!6220U31(a!6220!6220isNat(X), X) a!6220!6220plus(X, s(Y)) => a!6220!6220U41(a!6220!6220isNat(Y), Y, X) mark(U11(X, Y)) => a!6220!6220U11(mark(X), Y) mark(U12(X)) => a!6220!6220U12(mark(X)) mark(isNat(X)) => a!6220!6220isNat(X) mark(U21(X)) => a!6220!6220U21(mark(X)) mark(U31(X, Y)) => a!6220!6220U31(mark(X), Y) mark(U41(X, Y, Z)) => a!6220!6220U41(mark(X), Y, Z) mark(U42(X, Y, Z)) => a!6220!6220U42(mark(X), Y, Z) mark(plus(X, Y)) => a!6220!6220plus(mark(X), mark(Y)) mark(tt) => tt mark(s(X)) => s(mark(X)) mark(0) => 0 a!6220!6220U11(X, Y) => U11(X, Y) a!6220!6220U12(X) => U12(X) a!6220!6220isNat(X) => isNat(X) a!6220!6220U21(X) => U21(X) a!6220!6220U31(X, Y) => U31(X, Y) a!6220!6220U41(X, Y, Z) => U41(X, Y, Z) a!6220!6220U42(X, Y, Z) => U42(X, Y, Z) a!6220!6220plus(X, Y) => plus(X, Y) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] a!6220!6220U11#(tt, X) =#> a!6220!6220U12#(a!6220!6220isNat(X)) 1] a!6220!6220U11#(tt, X) =#> a!6220!6220isNat#(X) 2] a!6220!6220U31#(tt, X) =#> mark#(X) 3] a!6220!6220U41#(tt, X, Y) =#> a!6220!6220U42#(a!6220!6220isNat(Y), X, Y) 4] a!6220!6220U41#(tt, X, Y) =#> a!6220!6220isNat#(Y) 5] a!6220!6220U42#(tt, X, Y) =#> a!6220!6220plus#(mark(Y), mark(X)) 6] a!6220!6220U42#(tt, X, Y) =#> mark#(Y) 7] a!6220!6220U42#(tt, X, Y) =#> mark#(X) 8] a!6220!6220isNat#(plus(X, Y)) =#> a!6220!6220U11#(a!6220!6220isNat(X), Y) 9] a!6220!6220isNat#(plus(X, Y)) =#> a!6220!6220isNat#(X) 10] a!6220!6220isNat#(s(X)) =#> a!6220!6220U21#(a!6220!6220isNat(X)) 11] a!6220!6220isNat#(s(X)) =#> a!6220!6220isNat#(X) 12] a!6220!6220plus#(X, 0) =#> a!6220!6220U31#(a!6220!6220isNat(X), X) 13] a!6220!6220plus#(X, 0) =#> a!6220!6220isNat#(X) 14] a!6220!6220plus#(X, s(Y)) =#> a!6220!6220U41#(a!6220!6220isNat(Y), Y, X) 15] a!6220!6220plus#(X, s(Y)) =#> a!6220!6220isNat#(Y) 16] mark#(U11(X, Y)) =#> a!6220!6220U11#(mark(X), Y) 17] mark#(U11(X, Y)) =#> mark#(X) 18] mark#(U12(X)) =#> a!6220!6220U12#(mark(X)) 19] mark#(U12(X)) =#> mark#(X) 20] mark#(isNat(X)) =#> a!6220!6220isNat#(X) 21] mark#(U21(X)) =#> a!6220!6220U21#(mark(X)) 22] mark#(U21(X)) =#> mark#(X) 23] mark#(U31(X, Y)) =#> a!6220!6220U31#(mark(X), Y) 24] mark#(U31(X, Y)) =#> mark#(X) 25] mark#(U41(X, Y, Z)) =#> a!6220!6220U41#(mark(X), Y, Z) 26] mark#(U41(X, Y, Z)) =#> mark#(X) 27] mark#(U42(X, Y, Z)) =#> a!6220!6220U42#(mark(X), Y, Z) 28] mark#(U42(X, Y, Z)) =#> mark#(X) 29] mark#(plus(X, Y)) =#> a!6220!6220plus#(mark(X), mark(Y)) 30] mark#(plus(X, Y)) =#> mark#(X) 31] mark#(plus(X, Y)) =#> mark#(Y) 32] mark#(s(X)) =#> mark#(X) Rules R_0: a!6220!6220U11(tt, X) => a!6220!6220U12(a!6220!6220isNat(X)) a!6220!6220U12(tt) => tt a!6220!6220U21(tt) => tt a!6220!6220U31(tt, X) => mark(X) a!6220!6220U41(tt, X, Y) => a!6220!6220U42(a!6220!6220isNat(Y), X, Y) a!6220!6220U42(tt, X, Y) => s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220isNat(0) => tt a!6220!6220isNat(plus(X, Y)) => a!6220!6220U11(a!6220!6220isNat(X), Y) a!6220!6220isNat(s(X)) => a!6220!6220U21(a!6220!6220isNat(X)) a!6220!6220plus(X, 0) => a!6220!6220U31(a!6220!6220isNat(X), X) a!6220!6220plus(X, s(Y)) => a!6220!6220U41(a!6220!6220isNat(Y), Y, X) mark(U11(X, Y)) => a!6220!6220U11(mark(X), Y) mark(U12(X)) => a!6220!6220U12(mark(X)) mark(isNat(X)) => a!6220!6220isNat(X) mark(U21(X)) => a!6220!6220U21(mark(X)) mark(U31(X, Y)) => a!6220!6220U31(mark(X), Y) mark(U41(X, Y, Z)) => a!6220!6220U41(mark(X), Y, Z) mark(U42(X, Y, Z)) => a!6220!6220U42(mark(X), Y, Z) mark(plus(X, Y)) => a!6220!6220plus(mark(X), mark(Y)) mark(tt) => tt mark(s(X)) => s(mark(X)) mark(0) => 0 a!6220!6220U11(X, Y) => U11(X, Y) a!6220!6220U12(X) => U12(X) a!6220!6220isNat(X) => isNat(X) a!6220!6220U21(X) => U21(X) a!6220!6220U31(X, Y) => U31(X, Y) a!6220!6220U41(X, Y, Z) => U41(X, Y, Z) a!6220!6220U42(X, Y, Z) => U42(X, Y, Z) a!6220!6220plus(X, Y) => plus(X, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 8, 9, 10, 11 * 2 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 3 : 5, 6, 7 * 4 : 8, 9, 10, 11 * 5 : 12, 13, 14, 15 * 6 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 7 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 8 : 0, 1 * 9 : 8, 9, 10, 11 * 10 : * 11 : 8, 9, 10, 11 * 12 : 2 * 13 : 8, 9, 10, 11 * 14 : 3, 4 * 15 : 8, 9, 10, 11 * 16 : 0, 1 * 17 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 18 : * 19 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 20 : 8, 9, 10, 11 * 21 : * 22 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 23 : 2 * 24 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 25 : 3, 4 * 26 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 27 : 5, 6, 7 * 28 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 29 : 12, 13, 14, 15 * 30 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 31 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 * 32 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 This graph has the following strongly connected components: P_1: a!6220!6220U11#(tt, X) =#> a!6220!6220isNat#(X) a!6220!6220isNat#(plus(X, Y)) =#> a!6220!6220U11#(a!6220!6220isNat(X), Y) a!6220!6220isNat#(plus(X, Y)) =#> a!6220!6220isNat#(X) a!6220!6220isNat#(s(X)) =#> a!6220!6220isNat#(X) P_2: a!6220!6220U31#(tt, X) =#> mark#(X) a!6220!6220U41#(tt, X, Y) =#> a!6220!6220U42#(a!6220!6220isNat(Y), X, Y) a!6220!6220U42#(tt, X, Y) =#> a!6220!6220plus#(mark(Y), mark(X)) a!6220!6220U42#(tt, X, Y) =#> mark#(Y) a!6220!6220U42#(tt, X, Y) =#> mark#(X) a!6220!6220plus#(X, 0) =#> a!6220!6220U31#(a!6220!6220isNat(X), X) a!6220!6220plus#(X, s(Y)) =#> a!6220!6220U41#(a!6220!6220isNat(Y), Y, X) mark#(U11(X, Y)) =#> mark#(X) mark#(U12(X)) =#> mark#(X) mark#(U21(X)) =#> mark#(X) mark#(U31(X, Y)) =#> a!6220!6220U31#(mark(X), Y) mark#(U31(X, Y)) =#> mark#(X) mark#(U41(X, Y, Z)) =#> a!6220!6220U41#(mark(X), Y, Z) mark#(U41(X, Y, Z)) =#> mark#(X) mark#(U42(X, Y, Z)) =#> a!6220!6220U42#(mark(X), Y, Z) mark#(U42(X, Y, Z)) =#> mark#(X) mark#(plus(X, Y)) =#> a!6220!6220plus#(mark(X), mark(Y)) mark#(plus(X, Y)) =#> mark#(X) mark#(plus(X, Y)) =#> mark#(Y) mark#(s(X)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220U31#(tt, X) >? mark#(X) a!6220!6220U41#(tt, X, Y) >? a!6220!6220U42#(a!6220!6220isNat(Y), X, Y) a!6220!6220U42#(tt, X, Y) >? a!6220!6220plus#(mark(Y), mark(X)) a!6220!6220U42#(tt, X, Y) >? mark#(Y) a!6220!6220U42#(tt, X, Y) >? mark#(X) a!6220!6220plus#(X, 0) >? a!6220!6220U31#(a!6220!6220isNat(X), X) a!6220!6220plus#(X, s(Y)) >? a!6220!6220U41#(a!6220!6220isNat(Y), Y, X) mark#(U11(X, Y)) >? mark#(X) mark#(U12(X)) >? mark#(X) mark#(U21(X)) >? mark#(X) mark#(U31(X, Y)) >? a!6220!6220U31#(mark(X), Y) mark#(U31(X, Y)) >? mark#(X) mark#(U41(X, Y, Z)) >? a!6220!6220U41#(mark(X), Y, Z) mark#(U41(X, Y, Z)) >? mark#(X) mark#(U42(X, Y, Z)) >? a!6220!6220U42#(mark(X), Y, Z) mark#(U42(X, Y, Z)) >? mark#(X) mark#(plus(X, Y)) >? a!6220!6220plus#(mark(X), mark(Y)) mark#(plus(X, Y)) >? mark#(X) mark#(plus(X, Y)) >? mark#(Y) mark#(s(X)) >? mark#(X) a!6220!6220U11(tt, X) >= a!6220!6220U12(a!6220!6220isNat(X)) a!6220!6220U12(tt) >= tt a!6220!6220U21(tt) >= tt a!6220!6220U31(tt, X) >= mark(X) a!6220!6220U41(tt, X, Y) >= a!6220!6220U42(a!6220!6220isNat(Y), X, Y) a!6220!6220U42(tt, X, Y) >= s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220isNat(0) >= tt a!6220!6220isNat(plus(X, Y)) >= a!6220!6220U11(a!6220!6220isNat(X), Y) a!6220!6220isNat(s(X)) >= a!6220!6220U21(a!6220!6220isNat(X)) a!6220!6220plus(X, 0) >= a!6220!6220U31(a!6220!6220isNat(X), X) a!6220!6220plus(X, s(Y)) >= a!6220!6220U41(a!6220!6220isNat(Y), Y, X) mark(U11(X, Y)) >= a!6220!6220U11(mark(X), Y) mark(U12(X)) >= a!6220!6220U12(mark(X)) mark(isNat(X)) >= a!6220!6220isNat(X) mark(U21(X)) >= a!6220!6220U21(mark(X)) mark(U31(X, Y)) >= a!6220!6220U31(mark(X), Y) mark(U41(X, Y, Z)) >= a!6220!6220U41(mark(X), Y, Z) mark(U42(X, Y, Z)) >= a!6220!6220U42(mark(X), Y, Z) mark(plus(X, Y)) >= a!6220!6220plus(mark(X), mark(Y)) mark(tt) >= tt mark(s(X)) >= s(mark(X)) mark(0) >= 0 a!6220!6220U11(X, Y) >= U11(X, Y) a!6220!6220U12(X) >= U12(X) a!6220!6220isNat(X) >= isNat(X) a!6220!6220U21(X) >= U21(X) a!6220!6220U31(X, Y) >= U31(X, Y) a!6220!6220U41(X, Y, Z) >= U41(X, Y, Z) a!6220!6220U42(X, Y, Z) >= U42(X, Y, Z) a!6220!6220plus(X, Y) >= plus(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 U11 = \y0y1.y0 U12 = \y0.y0 U21 = \y0.y0 U31 = \y0y1.y1 + 2y0 U41 = \y0y1y2.1 + y0 + y2 + 2y1 U42 = \y0y1y2.1 + y0 + y2 + 2y1 a!6220!6220U11 = \y0y1.y0 a!6220!6220U12 = \y0.y0 a!6220!6220U21 = \y0.y0 a!6220!6220U31 = \y0y1.y1 + 2y0 a!6220!6220U31# = \y0y1.2y1 a!6220!6220U41 = \y0y1y2.1 + y0 + y2 + 2y1 a!6220!6220U41# = \y0y1y2.2y1 + 2y2 a!6220!6220U42 = \y0y1y2.1 + y0 + y2 + 2y1 a!6220!6220U42# = \y0y1y2.2y1 + 2y2 a!6220!6220isNat = \y0.0 a!6220!6220plus = \y0y1.1 + y0 + 2y1 a!6220!6220plus# = \y0y1.2y0 + 2y1 isNat = \y0.0 mark = \y0.y0 mark# = \y0.2y0 plus = \y0y1.1 + y0 + 2y1 s = \y0.y0 tt = 0 Using this interpretation, the requirements translate to: [[a!6220!6220U31#(tt, _x0)]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220U41#(tt, _x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220U42#(a!6220!6220isNat(_x1), _x0, _x1)]] [[a!6220!6220U42#(tt, _x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220plus#(mark(_x1), mark(_x0))]] [[a!6220!6220U42#(tt, _x0, _x1)]] = 2x0 + 2x1 >= 2x1 = [[mark#(_x1)]] [[a!6220!6220U42#(tt, _x0, _x1)]] = 2x0 + 2x1 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220plus#(_x0, 0)]] = 2x0 >= 2x0 = [[a!6220!6220U31#(a!6220!6220isNat(_x0), _x0)]] [[a!6220!6220plus#(_x0, s(_x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220U41#(a!6220!6220isNat(_x1), _x1, _x0)]] [[mark#(U11(_x0, _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(U12(_x0))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(U21(_x0))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(U31(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 = [[a!6220!6220U31#(mark(_x0), _x1)]] [[mark#(U31(_x0, _x1))]] = 2x1 + 4x0 >= 2x0 = [[mark#(_x0)]] [[mark#(U41(_x0, _x1, _x2))]] = 2 + 2x0 + 2x2 + 4x1 > 2x1 + 2x2 = [[a!6220!6220U41#(mark(_x0), _x1, _x2)]] [[mark#(U41(_x0, _x1, _x2))]] = 2 + 2x0 + 2x2 + 4x1 > 2x0 = [[mark#(_x0)]] [[mark#(U42(_x0, _x1, _x2))]] = 2 + 2x0 + 2x2 + 4x1 > 2x1 + 2x2 = [[a!6220!6220U42#(mark(_x0), _x1, _x2)]] [[mark#(U42(_x0, _x1, _x2))]] = 2 + 2x0 + 2x2 + 4x1 > 2x0 = [[mark#(_x0)]] [[mark#(plus(_x0, _x1))]] = 2 + 2x0 + 4x1 > 2x0 + 2x1 = [[a!6220!6220plus#(mark(_x0), mark(_x1))]] [[mark#(plus(_x0, _x1))]] = 2 + 2x0 + 4x1 > 2x0 = [[mark#(_x0)]] [[mark#(plus(_x0, _x1))]] = 2 + 2x0 + 4x1 > 2x1 = [[mark#(_x1)]] [[mark#(s(_x0))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220U11(tt, _x0)]] = 0 >= 0 = [[a!6220!6220U12(a!6220!6220isNat(_x0))]] [[a!6220!6220U12(tt)]] = 0 >= 0 = [[tt]] [[a!6220!6220U21(tt)]] = 0 >= 0 = [[tt]] [[a!6220!6220U31(tt, _x0)]] = x0 >= x0 = [[mark(_x0)]] [[a!6220!6220U41(tt, _x0, _x1)]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[a!6220!6220U42(a!6220!6220isNat(_x1), _x0, _x1)]] [[a!6220!6220U42(tt, _x0, _x1)]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[s(a!6220!6220plus(mark(_x1), mark(_x0)))]] [[a!6220!6220isNat(0)]] = 0 >= 0 = [[tt]] [[a!6220!6220isNat(plus(_x0, _x1))]] = 0 >= 0 = [[a!6220!6220U11(a!6220!6220isNat(_x0), _x1)]] [[a!6220!6220isNat(s(_x0))]] = 0 >= 0 = [[a!6220!6220U21(a!6220!6220isNat(_x0))]] [[a!6220!6220plus(_x0, 0)]] = 1 + x0 >= x0 = [[a!6220!6220U31(a!6220!6220isNat(_x0), _x0)]] [[a!6220!6220plus(_x0, s(_x1))]] = 1 + x0 + 2x1 >= 1 + x0 + 2x1 = [[a!6220!6220U41(a!6220!6220isNat(_x1), _x1, _x0)]] [[mark(U11(_x0, _x1))]] = x0 >= x0 = [[a!6220!6220U11(mark(_x0), _x1)]] [[mark(U12(_x0))]] = x0 >= x0 = [[a!6220!6220U12(mark(_x0))]] [[mark(isNat(_x0))]] = 0 >= 0 = [[a!6220!6220isNat(_x0)]] [[mark(U21(_x0))]] = x0 >= x0 = [[a!6220!6220U21(mark(_x0))]] [[mark(U31(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[a!6220!6220U31(mark(_x0), _x1)]] [[mark(U41(_x0, _x1, _x2))]] = 1 + x0 + x2 + 2x1 >= 1 + x0 + x2 + 2x1 = [[a!6220!6220U41(mark(_x0), _x1, _x2)]] [[mark(U42(_x0, _x1, _x2))]] = 1 + x0 + x2 + 2x1 >= 1 + x0 + x2 + 2x1 = [[a!6220!6220U42(mark(_x0), _x1, _x2)]] [[mark(plus(_x0, _x1))]] = 1 + x0 + 2x1 >= 1 + x0 + 2x1 = [[a!6220!6220plus(mark(_x0), mark(_x1))]] [[mark(tt)]] = 0 >= 0 = [[tt]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220U11(_x0, _x1)]] = x0 >= x0 = [[U11(_x0, _x1)]] [[a!6220!6220U12(_x0)]] = x0 >= x0 = [[U12(_x0)]] [[a!6220!6220isNat(_x0)]] = 0 >= 0 = [[isNat(_x0)]] [[a!6220!6220U21(_x0)]] = x0 >= x0 = [[U21(_x0)]] [[a!6220!6220U31(_x0, _x1)]] = x1 + 2x0 >= x1 + 2x0 = [[U31(_x0, _x1)]] [[a!6220!6220U41(_x0, _x1, _x2)]] = 1 + x0 + x2 + 2x1 >= 1 + x0 + x2 + 2x1 = [[U41(_x0, _x1, _x2)]] [[a!6220!6220U42(_x0, _x1, _x2)]] = 1 + x0 + x2 + 2x1 >= 1 + x0 + x2 + 2x1 = [[U42(_x0, _x1, _x2)]] [[a!6220!6220plus(_x0, _x1)]] = 1 + x0 + 2x1 >= 1 + x0 + 2x1 = [[plus(_x0, _x1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_2, R_0, minimal, formative) by (P_3, R_0, minimal, formative), where P_3 consists of: a!6220!6220U31#(tt, X) =#> mark#(X) a!6220!6220U41#(tt, X, Y) =#> a!6220!6220U42#(a!6220!6220isNat(Y), X, Y) a!6220!6220U42#(tt, X, Y) =#> a!6220!6220plus#(mark(Y), mark(X)) a!6220!6220U42#(tt, X, Y) =#> mark#(Y) a!6220!6220U42#(tt, X, Y) =#> mark#(X) a!6220!6220plus#(X, 0) =#> a!6220!6220U31#(a!6220!6220isNat(X), X) a!6220!6220plus#(X, s(Y)) =#> a!6220!6220U41#(a!6220!6220isNat(Y), Y, X) mark#(U11(X, Y)) =#> mark#(X) mark#(U12(X)) =#> mark#(X) mark#(U21(X)) =#> mark#(X) mark#(U31(X, Y)) =#> a!6220!6220U31#(mark(X), Y) mark#(U31(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 7, 8, 9, 10, 11, 12 * 1 : 2, 3, 4 * 2 : 5, 6 * 3 : 7, 8, 9, 10, 11, 12 * 4 : 7, 8, 9, 10, 11, 12 * 5 : 0 * 6 : 1 * 7 : 7, 8, 9, 10, 11, 12 * 8 : 7, 8, 9, 10, 11, 12 * 9 : 7, 8, 9, 10, 11, 12 * 10 : 0 * 11 : 7, 8, 9, 10, 11, 12 * 12 : 7, 8, 9, 10, 11, 12 This graph has the following strongly connected components: P_4: a!6220!6220U31#(tt, X) =#> mark#(X) mark#(U11(X, Y)) =#> mark#(X) mark#(U12(X)) =#> mark#(X) mark#(U21(X)) =#> mark#(X) mark#(U31(X, Y)) =#> a!6220!6220U31#(mark(X), Y) mark#(U31(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) P_5: a!6220!6220U41#(tt, X, Y) =#> a!6220!6220U42#(a!6220!6220isNat(Y), X, Y) a!6220!6220U42#(tt, X, Y) =#> a!6220!6220plus#(mark(Y), mark(X)) a!6220!6220plus#(X, s(Y)) =#> a!6220!6220U41#(a!6220!6220isNat(Y), Y, X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_3, R_0, m, f) by (P_4, R_0, m, f) and (P_5, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_4, R_0, minimal, formative) and (P_5, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220U41#(tt, X, Y) >? a!6220!6220U42#(a!6220!6220isNat(Y), X, Y) a!6220!6220U42#(tt, X, Y) >? a!6220!6220plus#(mark(Y), mark(X)) a!6220!6220plus#(X, s(Y)) >? a!6220!6220U41#(a!6220!6220isNat(Y), Y, X) a!6220!6220U11(tt, X) >= a!6220!6220U12(a!6220!6220isNat(X)) a!6220!6220U12(tt) >= tt a!6220!6220U21(tt) >= tt a!6220!6220U31(tt, X) >= mark(X) a!6220!6220U41(tt, X, Y) >= a!6220!6220U42(a!6220!6220isNat(Y), X, Y) a!6220!6220U42(tt, X, Y) >= s(a!6220!6220plus(mark(Y), mark(X))) a!6220!6220isNat(0) >= tt a!6220!6220isNat(plus(X, Y)) >= a!6220!6220U11(a!6220!6220isNat(X), Y) a!6220!6220isNat(s(X)) >= a!6220!6220U21(a!6220!6220isNat(X)) a!6220!6220plus(X, 0) >= a!6220!6220U31(a!6220!6220isNat(X), X) a!6220!6220plus(X, s(Y)) >= a!6220!6220U41(a!6220!6220isNat(Y), Y, X) mark(U11(X, Y)) >= a!6220!6220U11(mark(X), Y) mark(U12(X)) >= a!6220!6220U12(mark(X)) mark(isNat(X)) >= a!6220!6220isNat(X) mark(U21(X)) >= a!6220!6220U21(mark(X)) mark(U31(X, Y)) >= a!6220!6220U31(mark(X), Y) mark(U41(X, Y, Z)) >= a!6220!6220U41(mark(X), Y, Z) mark(U42(X, Y, Z)) >= a!6220!6220U42(mark(X), Y, Z) mark(plus(X, Y)) >= a!6220!6220plus(mark(X), mark(Y)) mark(tt) >= tt mark(s(X)) >= s(mark(X)) mark(0) >= 0 a!6220!6220U11(X, Y) >= U11(X, Y) a!6220!6220U12(X) >= U12(X) a!6220!6220isNat(X) >= isNat(X) a!6220!6220U21(X) >= U21(X) a!6220!6220U31(X, Y) >= U31(X, Y) a!6220!6220U41(X, Y, Z) >= U41(X, Y, Z) a!6220!6220U42(X, Y, Z) >= U42(X, Y, Z) a!6220!6220plus(X, Y) >= plus(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 U11 = \y0y1.0 U12 = \y0.0 U21 = \y0.0 U31 = \y0y1.y1 U41 = \y0y1y2.1 + y1 + y2 U42 = \y0y1y2.1 + y1 + y2 a!6220!6220U11 = \y0y1.0 a!6220!6220U12 = \y0.0 a!6220!6220U21 = \y0.0 a!6220!6220U31 = \y0y1.y1 a!6220!6220U41 = \y0y1y2.1 + y1 + y2 a!6220!6220U41# = \y0y1y2.2y1 a!6220!6220U42 = \y0y1y2.1 + y1 + y2 a!6220!6220U42# = \y0y1y2.2y1 a!6220!6220isNat = \y0.0 a!6220!6220plus = \y0y1.y0 + y1 a!6220!6220plus# = \y0y1.2y1 isNat = \y0.0 mark = \y0.y0 plus = \y0y1.y0 + y1 s = \y0.1 + y0 tt = 0 Using this interpretation, the requirements translate to: [[a!6220!6220U41#(tt, _x0, _x1)]] = 2x0 >= 2x0 = [[a!6220!6220U42#(a!6220!6220isNat(_x1), _x0, _x1)]] [[a!6220!6220U42#(tt, _x0, _x1)]] = 2x0 >= 2x0 = [[a!6220!6220plus#(mark(_x1), mark(_x0))]] [[a!6220!6220plus#(_x0, s(_x1))]] = 2 + 2x1 > 2x1 = [[a!6220!6220U41#(a!6220!6220isNat(_x1), _x1, _x0)]] [[a!6220!6220U11(tt, _x0)]] = 0 >= 0 = [[a!6220!6220U12(a!6220!6220isNat(_x0))]] [[a!6220!6220U12(tt)]] = 0 >= 0 = [[tt]] [[a!6220!6220U21(tt)]] = 0 >= 0 = [[tt]] [[a!6220!6220U31(tt, _x0)]] = x0 >= x0 = [[mark(_x0)]] [[a!6220!6220U41(tt, _x0, _x1)]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[a!6220!6220U42(a!6220!6220isNat(_x1), _x0, _x1)]] [[a!6220!6220U42(tt, _x0, _x1)]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[s(a!6220!6220plus(mark(_x1), mark(_x0)))]] [[a!6220!6220isNat(0)]] = 0 >= 0 = [[tt]] [[a!6220!6220isNat(plus(_x0, _x1))]] = 0 >= 0 = [[a!6220!6220U11(a!6220!6220isNat(_x0), _x1)]] [[a!6220!6220isNat(s(_x0))]] = 0 >= 0 = [[a!6220!6220U21(a!6220!6220isNat(_x0))]] [[a!6220!6220plus(_x0, 0)]] = x0 >= x0 = [[a!6220!6220U31(a!6220!6220isNat(_x0), _x0)]] [[a!6220!6220plus(_x0, s(_x1))]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[a!6220!6220U41(a!6220!6220isNat(_x1), _x1, _x0)]] [[mark(U11(_x0, _x1))]] = 0 >= 0 = [[a!6220!6220U11(mark(_x0), _x1)]] [[mark(U12(_x0))]] = 0 >= 0 = [[a!6220!6220U12(mark(_x0))]] [[mark(isNat(_x0))]] = 0 >= 0 = [[a!6220!6220isNat(_x0)]] [[mark(U21(_x0))]] = 0 >= 0 = [[a!6220!6220U21(mark(_x0))]] [[mark(U31(_x0, _x1))]] = x1 >= x1 = [[a!6220!6220U31(mark(_x0), _x1)]] [[mark(U41(_x0, _x1, _x2))]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[a!6220!6220U41(mark(_x0), _x1, _x2)]] [[mark(U42(_x0, _x1, _x2))]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[a!6220!6220U42(mark(_x0), _x1, _x2)]] [[mark(plus(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220plus(mark(_x0), mark(_x1))]] [[mark(tt)]] = 0 >= 0 = [[tt]] [[mark(s(_x0))]] = 1 + x0 >= 1 + x0 = [[s(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220U11(_x0, _x1)]] = 0 >= 0 = [[U11(_x0, _x1)]] [[a!6220!6220U12(_x0)]] = 0 >= 0 = [[U12(_x0)]] [[a!6220!6220isNat(_x0)]] = 0 >= 0 = [[isNat(_x0)]] [[a!6220!6220U21(_x0)]] = 0 >= 0 = [[U21(_x0)]] [[a!6220!6220U31(_x0, _x1)]] = x1 >= x1 = [[U31(_x0, _x1)]] [[a!6220!6220U41(_x0, _x1, _x2)]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[U41(_x0, _x1, _x2)]] [[a!6220!6220U42(_x0, _x1, _x2)]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[U42(_x0, _x1, _x2)]] [[a!6220!6220plus(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[plus(_x0, _x1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_5, R_0, minimal, formative) by (P_6, R_0, minimal, formative), where P_6 consists of: a!6220!6220U41#(tt, X, Y) =#> a!6220!6220U42#(a!6220!6220isNat(Y), X, Y) a!6220!6220U42#(tt, X, Y) =#> a!6220!6220plus#(mark(Y), mark(X)) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_4, R_0, minimal, formative) and (P_6, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1 * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(a!6220!6220U31#) = 2 nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(a!6220!6220U31#(tt, X)) = X = X = nu(mark#(X)) nu(mark#(U11(X, Y))) = U11(X, Y) |> X = nu(mark#(X)) nu(mark#(U12(X))) = U12(X) |> X = nu(mark#(X)) nu(mark#(U21(X))) = U21(X) |> X = nu(mark#(X)) nu(mark#(U31(X, Y))) = U31(X, Y) |> Y = nu(a!6220!6220U31#(mark(X), Y)) nu(mark#(U31(X, Y))) = U31(X, Y) |> X = nu(mark#(X)) nu(mark#(s(X))) = s(X) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_4, R_0, minimal, f) by (P_7, R_0, minimal, f), where P_7 contains: a!6220!6220U31#(tt, X) =#> mark#(X) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_7, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_7, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(a!6220!6220U11#) = 2 nu(a!6220!6220isNat#) = 1 Thus, we can orient the dependency pairs as follows: nu(a!6220!6220U11#(tt, X)) = X = X = nu(a!6220!6220isNat#(X)) nu(a!6220!6220isNat#(plus(X, Y))) = plus(X, Y) |> Y = nu(a!6220!6220U11#(a!6220!6220isNat(X), Y)) nu(a!6220!6220isNat#(plus(X, Y))) = plus(X, Y) |> X = nu(a!6220!6220isNat#(X)) nu(a!6220!6220isNat#(s(X))) = s(X) |> X = nu(a!6220!6220isNat#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by (P_8, R_0, minimal, f), where P_8 contains: a!6220!6220U11#(tt, X) =#> a!6220!6220isNat#(X) Thus, the original system is terminating if (P_8, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_8, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.