/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 113 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 42 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 4 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) UsableRulesProof [EQUIVALENT, 0 ms] (26) QDP (27) QDPSizeChangeProof [EQUIVALENT, 0 ms] (28) YES (29) QDP (30) UsableRulesProof [EQUIVALENT, 0 ms] (31) QDP (32) QDPSizeChangeProof [EQUIVALENT, 0 ms] (33) YES (34) QDP (35) MRRProof [EQUIVALENT, 56 ms] (36) QDP (37) MRRProof [EQUIVALENT, 52 ms] (38) QDP (39) QDPOrderProof [EQUIVALENT, 43 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 71 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 54 ms] (46) QDP (47) QDPOrderProof [EQUIVALENT, 0 ms] (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) QDPSizeChangeProof [EQUIVALENT, 0 ms] (52) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) active(head(cons(X, XS))) -> mark(X) active(tail(cons(X, XS))) -> mark(XS) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 1 + x_1 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(odds) = 0 POL(pairs) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: active(head(cons(X, XS))) -> mark(X) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) active(tail(cons(X, XS))) -> mark(XS) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 2*x_1 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(odds) = 0 POL(pairs) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 1 + 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: active(tail(cons(X, XS))) -> mark(XS) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(nats) -> MARK(cons(0, incr(nats))) ACTIVE(nats) -> CONS(0, incr(nats)) ACTIVE(nats) -> INCR(nats) ACTIVE(pairs) -> MARK(cons(0, incr(odds))) ACTIVE(pairs) -> CONS(0, incr(odds)) ACTIVE(pairs) -> INCR(odds) ACTIVE(odds) -> MARK(incr(pairs)) ACTIVE(odds) -> INCR(pairs) ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) ACTIVE(incr(cons(X, XS))) -> CONS(s(X), incr(XS)) ACTIVE(incr(cons(X, XS))) -> S(X) ACTIVE(incr(cons(X, XS))) -> INCR(XS) MARK(nats) -> ACTIVE(nats) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(0) -> ACTIVE(0) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(pairs) -> ACTIVE(pairs) MARK(odds) -> ACTIVE(odds) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(head(X)) -> HEAD(mark(X)) MARK(head(X)) -> MARK(X) MARK(tail(X)) -> ACTIVE(tail(mark(X))) MARK(tail(X)) -> TAIL(mark(X)) MARK(tail(X)) -> MARK(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) INCR(mark(X)) -> INCR(X) INCR(active(X)) -> INCR(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) HEAD(mark(X)) -> HEAD(X) HEAD(active(X)) -> HEAD(X) TAIL(mark(X)) -> TAIL(X) TAIL(active(X)) -> TAIL(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 14 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: TAIL(active(X)) -> TAIL(X) TAIL(mark(X)) -> TAIL(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: TAIL(active(X)) -> TAIL(X) TAIL(mark(X)) -> TAIL(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TAIL(active(X)) -> TAIL(X) The graph contains the following edges 1 > 1 *TAIL(mark(X)) -> TAIL(X) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: HEAD(active(X)) -> HEAD(X) HEAD(mark(X)) -> HEAD(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: HEAD(active(X)) -> HEAD(X) HEAD(mark(X)) -> HEAD(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HEAD(active(X)) -> HEAD(X) The graph contains the following edges 1 > 1 *HEAD(mark(X)) -> HEAD(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(active(X)) -> INCR(X) INCR(mark(X)) -> INCR(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(active(X)) -> INCR(X) INCR(mark(X)) -> INCR(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *INCR(active(X)) -> INCR(X) The graph contains the following edges 1 > 1 *INCR(mark(X)) -> INCR(X) The graph contains the following edges 1 > 1 ---------------------------------------- (28) YES ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (33) YES ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(cons(X1, X2)) -> MARK(X1) MARK(nats) -> ACTIVE(nats) ACTIVE(nats) -> MARK(cons(0, incr(nats))) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(pairs) -> ACTIVE(pairs) ACTIVE(pairs) -> MARK(cons(0, incr(odds))) MARK(odds) -> ACTIVE(odds) ACTIVE(odds) -> MARK(incr(pairs)) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(head(X)) -> MARK(X) MARK(tail(X)) -> ACTIVE(tail(mark(X))) MARK(tail(X)) -> MARK(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(head(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 2 + 2*x_1 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(odds) = 0 POL(pairs) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2*x_1 ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(cons(X1, X2)) -> MARK(X1) MARK(nats) -> ACTIVE(nats) ACTIVE(nats) -> MARK(cons(0, incr(nats))) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(pairs) -> ACTIVE(pairs) ACTIVE(pairs) -> MARK(cons(0, incr(odds))) MARK(odds) -> ACTIVE(odds) ACTIVE(odds) -> MARK(incr(pairs)) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(tail(X)) -> ACTIVE(tail(mark(X))) MARK(tail(X)) -> MARK(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(tail(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = 2*x_1 POL(MARK(x_1)) = 2*x_1 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(head(x_1)) = x_1 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(odds) = 0 POL(pairs) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2 + 2*x_1 ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(cons(X1, X2)) -> MARK(X1) MARK(nats) -> ACTIVE(nats) ACTIVE(nats) -> MARK(cons(0, incr(nats))) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(pairs) -> ACTIVE(pairs) ACTIVE(pairs) -> MARK(cons(0, incr(odds))) MARK(odds) -> ACTIVE(odds) ACTIVE(odds) -> MARK(incr(pairs)) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(tail(X)) -> ACTIVE(tail(mark(X))) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(nats) -> MARK(cons(0, incr(nats))) ACTIVE(pairs) -> MARK(cons(0, incr(odds))) ACTIVE(odds) -> MARK(incr(pairs)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 ACTIVE(x1) = x1 mark(x1) = x1 incr(x1) = x1 s(x1) = x1 nats = nats 0 = 0 pairs = pairs odds = odds head(x1) = head tail(x1) = tail active(x1) = x1 Knuth-Bendix order [KBO] with precedence:nats > 0 and weight map: nats=1 tail=2 0=1 head=2 odds=3 pairs=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) mark(incr(X)) -> active(incr(mark(X))) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) mark(0) -> active(0) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) incr(active(X)) -> incr(X) incr(mark(X)) -> incr(X) head(active(X)) -> head(X) head(mark(X)) -> head(X) tail(active(X)) -> tail(X) tail(mark(X)) -> tail(X) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(cons(X1, X2)) -> MARK(X1) MARK(nats) -> ACTIVE(nats) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(pairs) -> ACTIVE(pairs) MARK(odds) -> ACTIVE(odds) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(tail(X)) -> ACTIVE(tail(mark(X))) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(tail(X)) -> ACTIVE(tail(mark(X))) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = x1 incr(x1) = x1 cons(x1, x2) = cons(x1) MARK(x1) = x1 s(x1) = x1 mark(x1) = x1 head(x1) = head tail(x1) = tail active(x1) = x1 nats = nats 0 = 0 pairs = pairs odds = odds Knuth-Bendix order [KBO] with precedence:trivial and weight map: nats=4 tail=1 pairs=4 0=2 head=2 odds=5 cons_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(active(X)) -> s(X) s(mark(X)) -> s(X) incr(active(X)) -> incr(X) incr(mark(X)) -> incr(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) mark(incr(X)) -> active(incr(mark(X))) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) mark(0) -> active(0) head(active(X)) -> head(X) head(mark(X)) -> head(X) tail(active(X)) -> tail(X) tail(mark(X)) -> tail(X) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(tail(X)) -> ACTIVE(tail(mark(X))) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(head(X)) -> ACTIVE(head(mark(X))) MARK(tail(X)) -> ACTIVE(tail(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = x_1 POL( MARK_1(x_1) ) = 2 POL( cons_2(x_1, x_2) ) = max{0, -2} POL( s_1(x_1) ) = 0 POL( active_1(x_1) ) = 2 POL( mark_1(x_1) ) = 1 POL( incr_1(x_1) ) = 2 POL( head_1(x_1) ) = 1 POL( tail_1(x_1) ) = max{0, -2} POL( nats ) = 0 POL( 0 ) = 0 POL( pairs ) = 0 POL( odds ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(active(X)) -> s(X) s(mark(X)) -> s(X) incr(active(X)) -> incr(X) incr(mark(X)) -> incr(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) head(active(X)) -> head(X) head(mark(X)) -> head(X) tail(active(X)) -> tail(X) tail(mark(X)) -> tail(X) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(incr(cons(X, XS))) -> MARK(cons(s(X), incr(XS))) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = ACTIVE MARK(x1) = x1 cons(x1, x2) = cons incr(x1) = incr(x1) s(x1) = x1 Knuth-Bendix order [KBO] with precedence:ACTIVE > cons and weight map: incr_1=1 ACTIVE=1 cons=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(nats) -> mark(cons(0, incr(nats))) active(pairs) -> mark(cons(0, incr(odds))) active(odds) -> mark(incr(pairs)) active(incr(cons(X, XS))) -> mark(cons(s(X), incr(XS))) mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(pairs) -> active(pairs) mark(odds) -> active(odds) mark(s(X)) -> active(s(mark(X))) mark(head(X)) -> active(head(mark(X))) mark(tail(X)) -> active(tail(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) head(mark(X)) -> head(X) head(active(X)) -> head(X) tail(mark(X)) -> tail(X) tail(active(X)) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(s(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (52) YES