/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. !6220!6220 : [o * o] --> o active : [o] --> o and : [o * o] --> o isNePal : [o] --> o mark : [o] --> o nil : [] --> o ok : [o] --> o proper : [o] --> o top : [o] --> o tt : [] --> o active(!6220!6220(!6220!6220(X, Y), Z)) => mark(!6220!6220(X, !6220!6220(Y, Z))) active(!6220!6220(X, nil)) => mark(X) active(!6220!6220(nil, X)) => mark(X) active(and(tt, X)) => mark(X) active(isNePal(!6220!6220(X, !6220!6220(Y, X)))) => mark(tt) active(!6220!6220(X, Y)) => !6220!6220(active(X), Y) active(!6220!6220(X, Y)) => !6220!6220(X, active(Y)) active(and(X, Y)) => and(active(X), Y) active(isNePal(X)) => isNePal(active(X)) !6220!6220(mark(X), Y) => mark(!6220!6220(X, Y)) !6220!6220(X, mark(Y)) => mark(!6220!6220(X, Y)) and(mark(X), Y) => mark(and(X, Y)) isNePal(mark(X)) => mark(isNePal(X)) proper(!6220!6220(X, Y)) => !6220!6220(proper(X), proper(Y)) proper(nil) => ok(nil) proper(and(X, Y)) => and(proper(X), proper(Y)) proper(tt) => ok(tt) proper(isNePal(X)) => isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) => ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) => ok(and(X, Y)) isNePal(ok(X)) => ok(isNePal(X)) top(mark(X)) => top(proper(X)) top(ok(X)) => top(active(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(!6220!6220(X, Y), Z)) >? mark(!6220!6220(X, !6220!6220(Y, Z))) active(!6220!6220(X, nil)) >? mark(X) active(!6220!6220(nil, X)) >? mark(X) active(and(tt, X)) >? mark(X) active(isNePal(!6220!6220(X, !6220!6220(Y, X)))) >? mark(tt) active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) !6220!6220(mark(X), Y) >? mark(!6220!6220(X, Y)) !6220!6220(X, mark(Y)) >? mark(!6220!6220(X, Y)) and(mark(X), Y) >? mark(and(X, Y)) isNePal(mark(X)) >? mark(isNePal(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(nil) >? ok(nil) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) proper(isNePal(X)) >? isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(mark(X)) >? top(proper(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y0 + y1 active = \y0.y0 and = \y0y1.y0 + y1 isNePal = \y0.y0 mark = \y0.y0 nil = 1 ok = \y0.y0 proper = \y0.y0 top = \y0.2y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(!6220!6220(_x0, _x1), _x2))]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[mark(!6220!6220(_x0, !6220!6220(_x1, _x2)))]] [[active(!6220!6220(_x0, nil))]] = 1 + x0 > x0 = [[mark(_x0)]] [[active(!6220!6220(nil, _x0))]] = 1 + x0 > x0 = [[mark(_x0)]] [[active(and(tt, _x0))]] = x0 >= x0 = [[mark(_x0)]] [[active(isNePal(!6220!6220(_x0, !6220!6220(_x1, _x0))))]] = x1 + 2x0 >= 0 = [[mark(tt)]] [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = x0 >= x0 = [[isNePal(active(_x0))]] [[!6220!6220(mark(_x0), _x1)]] = x0 + x1 >= x0 + x1 = [[mark(!6220!6220(_x0, _x1))]] [[!6220!6220(_x0, mark(_x1))]] = x0 + x1 >= x0 + x1 = [[mark(!6220!6220(_x0, _x1))]] [[and(mark(_x0), _x1)]] = x0 + x1 >= x0 + x1 = [[mark(and(_x0, _x1))]] [[isNePal(mark(_x0))]] = x0 >= x0 = [[mark(isNePal(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(nil)]] = 1 >= 1 = [[ok(nil)]] [[proper(and(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[proper(isNePal(_x0))]] = x0 >= x0 = [[isNePal(proper(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = x0 + x1 >= x0 + x1 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = x0 + x1 >= x0 + x1 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = x0 >= x0 = [[ok(isNePal(_x0))]] [[top(mark(_x0))]] = 2x0 >= 2x0 = [[top(proper(_x0))]] [[top(ok(_x0))]] = 2x0 >= 2x0 = [[top(active(_x0))]] We can thus remove the following rules: active(!6220!6220(X, nil)) => mark(X) active(!6220!6220(nil, X)) => mark(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(!6220!6220(X, Y), Z)) >? mark(!6220!6220(X, !6220!6220(Y, Z))) active(and(tt, X)) >? mark(X) active(isNePal(!6220!6220(X, !6220!6220(Y, X)))) >? mark(tt) active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) !6220!6220(mark(X), Y) >? mark(!6220!6220(X, Y)) !6220!6220(X, mark(Y)) >? mark(!6220!6220(X, Y)) and(mark(X), Y) >? mark(and(X, Y)) isNePal(mark(X)) >? mark(isNePal(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(nil) >? ok(nil) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) proper(isNePal(X)) >? isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(mark(X)) >? top(proper(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y0 + y1 active = \y0.y0 and = \y0y1.1 + y1 + 2y0 isNePal = \y0.2y0 mark = \y0.y0 nil = 0 ok = \y0.y0 proper = \y0.y0 top = \y0.2y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(!6220!6220(_x0, _x1), _x2))]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[mark(!6220!6220(_x0, !6220!6220(_x1, _x2)))]] [[active(and(tt, _x0))]] = 1 + x0 > x0 = [[mark(_x0)]] [[active(isNePal(!6220!6220(_x0, !6220!6220(_x1, _x0))))]] = 2x1 + 4x0 >= 0 = [[mark(tt)]] [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(active(_x0))]] [[!6220!6220(mark(_x0), _x1)]] = x0 + x1 >= x0 + x1 = [[mark(!6220!6220(_x0, _x1))]] [[!6220!6220(_x0, mark(_x1))]] = x0 + x1 >= x0 + x1 = [[mark(!6220!6220(_x0, _x1))]] [[and(mark(_x0), _x1)]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[mark(and(_x0, _x1))]] [[isNePal(mark(_x0))]] = 2x0 >= 2x0 = [[mark(isNePal(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(nil)]] = 0 >= 0 = [[ok(nil)]] [[proper(and(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[proper(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(proper(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = x0 + x1 >= x0 + x1 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 2x0 >= 2x0 = [[ok(isNePal(_x0))]] [[top(mark(_x0))]] = 2x0 >= 2x0 = [[top(proper(_x0))]] [[top(ok(_x0))]] = 2x0 >= 2x0 = [[top(active(_x0))]] We can thus remove the following rules: active(and(tt, X)) => mark(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(!6220!6220(X, Y), Z)) >? mark(!6220!6220(X, !6220!6220(Y, Z))) active(isNePal(!6220!6220(X, !6220!6220(Y, X)))) >? mark(tt) active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) !6220!6220(mark(X), Y) >? mark(!6220!6220(X, Y)) !6220!6220(X, mark(Y)) >? mark(!6220!6220(X, Y)) and(mark(X), Y) >? mark(and(X, Y)) isNePal(mark(X)) >? mark(isNePal(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(nil) >? ok(nil) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) proper(isNePal(X)) >? isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(mark(X)) >? top(proper(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y1 + 2y0 active = \y0.y0 and = \y0y1.y1 + 2y0 isNePal = \y0.1 + y0 mark = \y0.y0 nil = 0 ok = \y0.y0 proper = \y0.y0 top = \y0.y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(!6220!6220(_x0, _x1), _x2))]] = x2 + 2x1 + 4x0 >= x2 + 2x0 + 2x1 = [[mark(!6220!6220(_x0, !6220!6220(_x1, _x2)))]] [[active(isNePal(!6220!6220(_x0, !6220!6220(_x1, _x0))))]] = 1 + 2x1 + 3x0 > 0 = [[mark(tt)]] [[active(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 1 + x0 >= 1 + x0 = [[isNePal(active(_x0))]] [[!6220!6220(mark(_x0), _x1)]] = x1 + 2x0 >= x1 + 2x0 = [[mark(!6220!6220(_x0, _x1))]] [[!6220!6220(_x0, mark(_x1))]] = x1 + 2x0 >= x1 + 2x0 = [[mark(!6220!6220(_x0, _x1))]] [[and(mark(_x0), _x1)]] = x1 + 2x0 >= x1 + 2x0 = [[mark(and(_x0, _x1))]] [[isNePal(mark(_x0))]] = 1 + x0 >= 1 + x0 = [[mark(isNePal(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(nil)]] = 0 >= 0 = [[ok(nil)]] [[proper(and(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[proper(isNePal(_x0))]] = 1 + x0 >= 1 + x0 = [[isNePal(proper(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = x1 + 2x0 >= x1 + 2x0 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = x1 + 2x0 >= x1 + 2x0 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 1 + x0 >= 1 + x0 = [[ok(isNePal(_x0))]] [[top(mark(_x0))]] = x0 >= x0 = [[top(proper(_x0))]] [[top(ok(_x0))]] = x0 >= x0 = [[top(active(_x0))]] We can thus remove the following rules: active(isNePal(!6220!6220(X, !6220!6220(Y, X)))) => mark(tt) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(!6220!6220(X, Y), Z)) >? mark(!6220!6220(X, !6220!6220(Y, Z))) active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) !6220!6220(mark(X), Y) >? mark(!6220!6220(X, Y)) !6220!6220(X, mark(Y)) >? mark(!6220!6220(X, Y)) and(mark(X), Y) >? mark(and(X, Y)) isNePal(mark(X)) >? mark(isNePal(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(nil) >? ok(nil) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) proper(isNePal(X)) >? isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(mark(X)) >? top(proper(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.1 + y1 + 3y0 active = \y0.y0 and = \y0y1.y1 + 2y0 isNePal = \y0.2y0 mark = \y0.y0 nil = 0 ok = \y0.y0 proper = \y0.y0 top = \y0.y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(!6220!6220(_x0, _x1), _x2))]] = 4 + x2 + 3x1 + 9x0 > 2 + x2 + 3x0 + 3x1 = [[mark(!6220!6220(_x0, !6220!6220(_x1, _x2)))]] [[active(!6220!6220(_x0, _x1))]] = 1 + x1 + 3x0 >= 1 + x1 + 3x0 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = 1 + x1 + 3x0 >= 1 + x1 + 3x0 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(active(_x0))]] [[!6220!6220(mark(_x0), _x1)]] = 1 + x1 + 3x0 >= 1 + x1 + 3x0 = [[mark(!6220!6220(_x0, _x1))]] [[!6220!6220(_x0, mark(_x1))]] = 1 + x1 + 3x0 >= 1 + x1 + 3x0 = [[mark(!6220!6220(_x0, _x1))]] [[and(mark(_x0), _x1)]] = x1 + 2x0 >= x1 + 2x0 = [[mark(and(_x0, _x1))]] [[isNePal(mark(_x0))]] = 2x0 >= 2x0 = [[mark(isNePal(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = 1 + x1 + 3x0 >= 1 + x1 + 3x0 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(nil)]] = 0 >= 0 = [[ok(nil)]] [[proper(and(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[proper(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(proper(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = 1 + x1 + 3x0 >= 1 + x1 + 3x0 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = x1 + 2x0 >= x1 + 2x0 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 2x0 >= 2x0 = [[ok(isNePal(_x0))]] [[top(mark(_x0))]] = x0 >= x0 = [[top(proper(_x0))]] [[top(ok(_x0))]] = x0 >= x0 = [[top(active(_x0))]] We can thus remove the following rules: active(!6220!6220(!6220!6220(X, Y), Z)) => mark(!6220!6220(X, !6220!6220(Y, Z))) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) !6220!6220(mark(X), Y) >? mark(!6220!6220(X, Y)) !6220!6220(X, mark(Y)) >? mark(!6220!6220(X, Y)) and(mark(X), Y) >? mark(and(X, Y)) isNePal(mark(X)) >? mark(isNePal(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(nil) >? ok(nil) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) proper(isNePal(X)) >? isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(mark(X)) >? top(proper(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y1 + 2y0 active = \y0.y0 and = \y0y1.y1 + 2y0 isNePal = \y0.y0 mark = \y0.2 + y0 nil = 0 ok = \y0.y0 proper = \y0.y0 top = \y0.y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = x0 >= x0 = [[isNePal(active(_x0))]] [[!6220!6220(mark(_x0), _x1)]] = 4 + x1 + 2x0 > 2 + x1 + 2x0 = [[mark(!6220!6220(_x0, _x1))]] [[!6220!6220(_x0, mark(_x1))]] = 2 + x1 + 2x0 >= 2 + x1 + 2x0 = [[mark(!6220!6220(_x0, _x1))]] [[and(mark(_x0), _x1)]] = 4 + x1 + 2x0 > 2 + x1 + 2x0 = [[mark(and(_x0, _x1))]] [[isNePal(mark(_x0))]] = 2 + x0 >= 2 + x0 = [[mark(isNePal(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(nil)]] = 0 >= 0 = [[ok(nil)]] [[proper(and(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[proper(isNePal(_x0))]] = x0 >= x0 = [[isNePal(proper(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = x1 + 2x0 >= x1 + 2x0 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = x1 + 2x0 >= x1 + 2x0 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = x0 >= x0 = [[ok(isNePal(_x0))]] [[top(mark(_x0))]] = 2 + x0 > x0 = [[top(proper(_x0))]] [[top(ok(_x0))]] = x0 >= x0 = [[top(active(_x0))]] We can thus remove the following rules: !6220!6220(mark(X), Y) => mark(!6220!6220(X, Y)) and(mark(X), Y) => mark(and(X, Y)) top(mark(X)) => top(proper(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) !6220!6220(X, mark(Y)) >? mark(!6220!6220(X, Y)) isNePal(mark(X)) >? mark(isNePal(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(nil) >? ok(nil) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) proper(isNePal(X)) >? isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y0 + 2y1 active = \y0.y0 and = \y0y1.y0 + y1 isNePal = \y0.2y0 mark = \y0.2 + y0 nil = 3 ok = \y0.2y0 proper = \y0.3y0 top = \y0.y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(active(_x0))]] [[!6220!6220(_x0, mark(_x1))]] = 4 + x0 + 2x1 > 2 + x0 + 2x1 = [[mark(!6220!6220(_x0, _x1))]] [[isNePal(mark(_x0))]] = 4 + 2x0 > 2 + 2x0 = [[mark(isNePal(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = 3x0 + 6x1 >= 3x0 + 6x1 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(nil)]] = 9 > 6 = [[ok(nil)]] [[proper(and(_x0, _x1))]] = 3x0 + 3x1 >= 3x0 + 3x1 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[proper(isNePal(_x0))]] = 6x0 >= 6x0 = [[isNePal(proper(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 4x0 >= 4x0 = [[ok(isNePal(_x0))]] [[top(ok(_x0))]] = 2x0 >= x0 = [[top(active(_x0))]] We can thus remove the following rules: !6220!6220(X, mark(Y)) => mark(!6220!6220(X, Y)) isNePal(mark(X)) => mark(isNePal(X)) proper(nil) => ok(nil) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) proper(isNePal(X)) >? isNePal(proper(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y0 + 2y1 active = \y0.y0 and = \y0y1.y0 + 2y1 isNePal = \y0.1 + 2y0 ok = \y0.y0 proper = \y0.2y0 top = \y0.y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[isNePal(active(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(and(_x0, _x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[proper(isNePal(_x0))]] = 2 + 4x0 > 1 + 4x0 = [[isNePal(proper(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = x0 + 2x1 >= x0 + 2x1 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = x0 + 2x1 >= x0 + 2x1 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[ok(isNePal(_x0))]] [[top(ok(_x0))]] = x0 >= x0 = [[top(active(_x0))]] We can thus remove the following rules: proper(isNePal(X)) => isNePal(proper(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) proper(!6220!6220(X, Y)) >? !6220!6220(proper(X), proper(Y)) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.1 + y1 + 2y0 active = \y0.y0 and = \y0y1.y0 + y1 isNePal = \y0.2y0 ok = \y0.y0 proper = \y0.2y0 top = \y0.2y0 tt = 0 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(active(_x0))]] [[proper(!6220!6220(_x0, _x1))]] = 2 + 2x1 + 4x0 > 1 + 2x1 + 4x0 = [[!6220!6220(proper(_x0), proper(_x1))]] [[proper(and(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 0 >= 0 = [[ok(tt)]] [[!6220!6220(ok(_x0), ok(_x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = x0 + x1 >= x0 + x1 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 2x0 >= 2x0 = [[ok(isNePal(_x0))]] [[top(ok(_x0))]] = 2x0 >= 2x0 = [[top(active(_x0))]] We can thus remove the following rules: proper(!6220!6220(X, Y)) => !6220!6220(proper(X), proper(Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) proper(and(X, Y)) >? and(proper(X), proper(Y)) proper(tt) >? ok(tt) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y0 + y1 active = \y0.y0 and = \y0y1.y0 + 2y1 isNePal = \y0.2y0 ok = \y0.2y0 proper = \y0.3y0 top = \y0.2y0 tt = 2 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(active(_x0))]] [[proper(and(_x0, _x1))]] = 3x0 + 6x1 >= 3x0 + 6x1 = [[and(proper(_x0), proper(_x1))]] [[proper(tt)]] = 6 > 4 = [[ok(tt)]] [[!6220!6220(ok(_x0), ok(_x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 4x0 >= 4x0 = [[ok(isNePal(_x0))]] [[top(ok(_x0))]] = 4x0 >= 2x0 = [[top(active(_x0))]] We can thus remove the following rules: proper(tt) => ok(tt) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) proper(and(X, Y)) >? and(proper(X), proper(Y)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y1 + 2y0 active = \y0.y0 and = \y0y1.2 + y1 + 2y0 isNePal = \y0.2y0 ok = \y0.y0 proper = \y0.2y0 top = \y0.y0 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = 2 + x1 + 2x0 >= 2 + x1 + 2x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(active(_x0))]] [[proper(and(_x0, _x1))]] = 4 + 2x1 + 4x0 > 2 + 2x1 + 4x0 = [[and(proper(_x0), proper(_x1))]] [[!6220!6220(ok(_x0), ok(_x1))]] = x1 + 2x0 >= x1 + 2x0 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = 2 + x1 + 2x0 >= 2 + x1 + 2x0 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 2x0 >= 2x0 = [[ok(isNePal(_x0))]] [[top(ok(_x0))]] = x0 >= x0 = [[top(active(_x0))]] We can thus remove the following rules: proper(and(X, Y)) => and(proper(X), proper(Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) !6220!6220(ok(X), ok(Y)) >? ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) >? ok(and(X, Y)) isNePal(ok(X)) >? ok(isNePal(X)) top(ok(X)) >? top(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.y0 + y1 active = \y0.y0 and = \y0y1.y1 + 2y0 isNePal = \y0.2y0 ok = \y0.1 + 2y0 top = \y0.y0 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 2x0 >= 2x0 = [[isNePal(active(_x0))]] [[!6220!6220(ok(_x0), ok(_x1))]] = 2 + 2x0 + 2x1 > 1 + 2x0 + 2x1 = [[ok(!6220!6220(_x0, _x1))]] [[and(ok(_x0), ok(_x1))]] = 3 + 2x1 + 4x0 > 1 + 2x1 + 4x0 = [[ok(and(_x0, _x1))]] [[isNePal(ok(_x0))]] = 2 + 4x0 > 1 + 4x0 = [[ok(isNePal(_x0))]] [[top(ok(_x0))]] = 1 + 2x0 > x0 = [[top(active(_x0))]] We can thus remove the following rules: !6220!6220(ok(X), ok(Y)) => ok(!6220!6220(X, Y)) and(ok(X), ok(Y)) => ok(and(X, Y)) isNePal(ok(X)) => ok(isNePal(X)) top(ok(X)) => top(active(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(!6220!6220(X, Y)) >? !6220!6220(active(X), Y) active(!6220!6220(X, Y)) >? !6220!6220(X, active(Y)) active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !6220!6220 = \y0y1.3 + y0 + y1 active = \y0.3y0 and = \y0y1.y0 + y1 isNePal = \y0.y0 Using this interpretation, the requirements translate to: [[active(!6220!6220(_x0, _x1))]] = 9 + 3x0 + 3x1 > 3 + x1 + 3x0 = [[!6220!6220(active(_x0), _x1)]] [[active(!6220!6220(_x0, _x1))]] = 9 + 3x0 + 3x1 > 3 + x0 + 3x1 = [[!6220!6220(_x0, active(_x1))]] [[active(and(_x0, _x1))]] = 3x0 + 3x1 >= x1 + 3x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 3x0 >= 3x0 = [[isNePal(active(_x0))]] We can thus remove the following rules: active(!6220!6220(X, Y)) => !6220!6220(active(X), Y) active(!6220!6220(X, Y)) => !6220!6220(X, active(Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(and(X, Y)) >? and(active(X), Y) active(isNePal(X)) >? isNePal(active(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: active = \y0.3y0 and = \y0y1.y0 + y1 isNePal = \y0.2 + y0 Using this interpretation, the requirements translate to: [[active(and(_x0, _x1))]] = 3x0 + 3x1 >= x1 + 3x0 = [[and(active(_x0), _x1)]] [[active(isNePal(_x0))]] = 6 + 3x0 > 2 + 3x0 = [[isNePal(active(_x0))]] We can thus remove the following rules: active(isNePal(X)) => isNePal(active(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(and(X, Y)) >? and(active(X), Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: active = \y0.3y0 and = \y0y1.1 + y0 + y1 Using this interpretation, the requirements translate to: [[active(and(_x0, _x1))]] = 3 + 3x0 + 3x1 > 1 + x1 + 3x0 = [[and(active(_x0), _x1)]] We can thus remove the following rules: active(and(X, Y)) => and(active(X), Y) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.