/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 41 ms] (2) QTRS (3) Overlay + Local Confluence [EQUIVALENT, 4 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 24 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) UsableRulesProof [EQUIVALENT, 0 ms] (10) QDP (11) QReductionProof [EQUIVALENT, 0 ms] (12) QDP (13) NonTerminationLoopProof [COMPLETE, 6 ms] (14) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c -> n__c activate(n__g(X)) -> g(X) activate(n__c) -> c activate(X) -> X Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = 1 + x_1 POL(c) = 1 POL(f(x_1)) = 1 + x_1 POL(g(x_1)) = x_1 POL(n__c) = 0 POL(n__g(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: c -> n__c activate(n__g(X)) -> g(X) activate(X) -> X ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c Q is empty. ---------------------------------------- (3) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: C -> F(n__g(n__c)) F(n__g(X)) -> G(activate(X)) F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C C -> F(n__g(n__c)) The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C C -> F(n__g(n__c)) R is empty. The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. c f(n__g(x0)) g(x0) activate(n__c) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C C -> F(n__g(n__c)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = ACTIVATE(n__c) evaluates to t =ACTIVATE(n__c) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence ACTIVATE(n__c) -> C with rule ACTIVATE(n__c) -> C at position [] and matcher [ ] C -> F(n__g(n__c)) with rule C -> F(n__g(n__c)) at position [] and matcher [ ] F(n__g(n__c)) -> ACTIVATE(n__c) with rule F(n__g(X)) -> ACTIVATE(X) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (14) NO