/export/starexec/sandbox2/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO Problem: c() -> f(n__g(n__c())) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c() -> n__c() activate(n__g(X)) -> g(X) activate(n__c()) -> c() activate(X) -> X Proof: Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [0] [g](x0) = [0 0 1]x0 + [0] [0 0 0] [1], [1 0 1] [activate](x0) = [1 1 0]x0 [1 0 1] , [1 1 0] [f](x0) = [1 1 0]x0 [0 0 1] , [1 0 0] [0] [n__g](x0) = [0 0 1]x0 + [0] [0 0 0] [1], [1] [n__c] = [0] [0], [1] [c] = [1] [1] orientation: [1] [1] c() = [1] >= [1] = f(n__g(n__c())) [1] [1] [1 0 1] [0] [1 0 1] [0] f(n__g(X)) = [1 0 1]X + [0] >= [1 0 1]X + [0] = g(activate(X)) [0 0 0] [1] [0 0 0] [1] [1 0 0] [0] [1 0 0] [0] g(X) = [0 0 1]X + [0] >= [0 0 1]X + [0] = n__g(X) [0 0 0] [1] [0 0 0] [1] [1] [1] c() = [1] >= [0] = n__c() [1] [0] [1 0 0] [1] [1 0 0] [0] activate(n__g(X)) = [1 0 1]X + [0] >= [0 0 1]X + [0] = g(X) [1 0 0] [1] [0 0 0] [1] [1] [1] activate(n__c()) = [1] >= [1] = c() [1] [1] [1 0 1] activate(X) = [1 1 0]X >= X = X [1 0 1] problem: c() -> f(n__g(n__c())) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c() -> n__c() activate(n__c()) -> c() activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [g](x0) = [0 0 1]x0 [0 0 0] , [1 0 1] [0] [activate](x0) = [0 1 0]x0 + [1] [0 0 1] [0], [1 1 0] [f](x0) = [0 1 0]x0 [0 0 0] , [1 0 0] [n__g](x0) = [0 0 1]x0 [0 0 0] , [0] [n__c] = [0] [1], [1] [c] = [1] [1] orientation: [1] [1] c() = [1] >= [1] = f(n__g(n__c())) [1] [0] [1 0 1] [1 0 1] f(n__g(X)) = [0 0 1]X >= [0 0 1]X = g(activate(X)) [0 0 0] [0 0 0] [1 0 0] [1 0 0] g(X) = [0 0 1]X >= [0 0 1]X = n__g(X) [0 0 0] [0 0 0] [1] [0] c() = [1] >= [0] = n__c() [1] [1] [1] [1] activate(n__c()) = [1] >= [1] = c() [1] [1] [1 0 1] [0] activate(X) = [0 1 0]X + [1] >= X = X [0 0 1] [0] problem: c() -> f(n__g(n__c())) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c()) -> c() activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [0] [g](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [1] [activate](x0) = x0 + [0] [1], [1 0 1] [f](x0) = [0 0 0]x0 [0 0 1] , [1 0 0] [0] [n__g](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [0] [n__c] = [0] [0], [1] [c] = [0] [1] orientation: [1] [1] c() = [0] >= [0] = f(n__g(n__c())) [1] [1] [1 0 0] [1] [1 0 0] [1] f(n__g(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = g(activate(X)) [0 0 0] [1] [0 0 0] [1] [1 0 0] [0] [1 0 0] [0] g(X) = [0 0 0]X + [0] >= [0 0 0]X + [0] = n__g(X) [0 0 0] [1] [0 0 0] [1] [1] [1] activate(n__c()) = [0] >= [0] = c() [1] [1] [1] activate(X) = X + [0] >= X = X [1] problem: c() -> f(n__g(n__c())) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c()) -> c() Unfolding Processor: loop length: 3 terms: c() f(n__g(n__c())) g(activate(n__c())) context: g([]) substitution: Qed