/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 1 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPOrderProof [EQUIVALENT, 85 ms] (17) QDP (18) DependencyGraphProof [EQUIVALENT, 0 ms] (19) QDP (20) QDPSizeChangeProof [EQUIVALENT, 0 ms] (21) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) A__DIV(s(X), s(Y)) -> A__GEQ(X, Y) A__IF(true, X, Y) -> MARK(X) A__IF(false, X, Y) -> MARK(Y) MARK(minus(X1, X2)) -> A__MINUS(X1, X2) MARK(geq(X1, X2)) -> A__GEQ(X1, X2) MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) A__IF(true, X, Y) -> MARK(X) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) A__IF(false, X, Y) -> MARK(Y) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__DIV_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( A__IF_3(x_1, ..., x_3) ) = x_2 + x_3 + 2 POL( mark_1(x_1) ) = x_1 POL( minus_2(x_1, x_2) ) = 0 POL( a__minus_2(x_1, x_2) ) = 0 POL( geq_2(x_1, x_2) ) = 0 POL( a__geq_2(x_1, x_2) ) = 0 POL( div_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( a__div_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( s_1(x_1) ) = x_1 + 1 POL( a__if_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 POL( 0 ) = 0 POL( true ) = 0 POL( if_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 POL( false ) = 0 POL( MARK_1(x_1) ) = x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) a__if(false, X, Y) -> mark(Y) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__geq(X1, X2) -> geq(X1, X2) a__div(0, s(Y)) -> 0 a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__minus(X1, X2) -> minus(X1, X2) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) A__IF(true, X, Y) -> MARK(X) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) A__IF(false, X, Y) -> MARK(Y) MARK(if(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) A__IF(true, X, Y) -> MARK(X) MARK(if(X1, X2, X3)) -> MARK(X1) A__IF(false, X, Y) -> MARK(Y) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) The graph contains the following edges 1 > 2, 1 > 3 *MARK(div(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(if(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 *A__IF(true, X, Y) -> MARK(X) The graph contains the following edges 2 >= 1 *A__IF(false, X, Y) -> MARK(Y) The graph contains the following edges 3 >= 1 ---------------------------------------- (21) YES