/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o a!6220!6220tail : [o] --> o a!6220!6220zeros : [] --> o cons : [o * o] --> o mark : [o] --> o tail : [o] --> o zeros : [] --> o a!6220!6220zeros => cons(0, zeros) a!6220!6220tail(cons(X, Y)) => mark(Y) mark(zeros) => a!6220!6220zeros mark(tail(X)) => a!6220!6220tail(mark(X)) mark(cons(X, Y)) => cons(mark(X), Y) mark(0) => 0 a!6220!6220zeros => zeros a!6220!6220tail(X) => tail(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220tail(cons(X, Y)) >? mark(Y) mark(zeros) >? a!6220!6220zeros mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 a!6220!6220zeros >? zeros a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220tail = \y0.3 + 2y0 a!6220!6220zeros = 0 cons = \y0y1.y0 + y1 mark = \y0.2y0 tail = \y0.2 + 2y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220tail(cons(_x0, _x1))]] = 3 + 2x0 + 2x1 > 2x1 = [[mark(_x1)]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(tail(_x0))]] = 4 + 4x0 > 3 + 4x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x1 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220tail(_x0)]] = 3 + 2x0 > 2 + 2x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220tail(cons(X, Y)) => mark(Y) mark(tail(X)) => a!6220!6220tail(mark(X)) a!6220!6220tail(X) => tail(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) mark(zeros) >? a!6220!6220zeros mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 a!6220!6220zeros >? zeros We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220zeros = 2 cons = \y0y1.y0 + y1 mark = \y0.3 + 3y0 zeros = 1 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 2 > 1 = [[cons(0, zeros)]] [[mark(zeros)]] = 6 > 2 = [[a!6220!6220zeros]] [[mark(cons(_x0, _x1))]] = 3 + 3x0 + 3x1 >= 3 + x1 + 3x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 3 > 0 = [[0]] [[a!6220!6220zeros]] = 2 > 1 = [[zeros]] We can thus remove the following rules: a!6220!6220zeros => cons(0, zeros) mark(zeros) => a!6220!6220zeros mark(0) => 0 a!6220!6220zeros => zeros We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): mark(cons(X, Y)) >? cons(mark(X), Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.1 + y0 + y1 mark = \y0.3y0 Using this interpretation, the requirements translate to: [[mark(cons(_x0, _x1))]] = 3 + 3x0 + 3x1 > 1 + x1 + 3x0 = [[cons(mark(_x0), _x1)]] We can thus remove the following rules: mark(cons(X, Y)) => cons(mark(X), Y) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.