/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 38 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 247 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) TransformationProof [EQUIVALENT, 0 ms] (11) QDP (12) TransformationProof [EQUIVALENT, 0 ms] (13) QDP (14) DependencyGraphProof [EQUIVALENT, 0 ms] (15) QDP (16) TransformationProof [EQUIVALENT, 0 ms] (17) QDP (18) DependencyGraphProof [EQUIVALENT, 0 ms] (19) QDP (20) TransformationProof [EQUIVALENT, 0 ms] (21) QDP (22) DependencyGraphProof [EQUIVALENT, 0 ms] (23) QDP (24) TransformationProof [EQUIVALENT, 0 ms] (25) QDP (26) TransformationProof [EQUIVALENT, 0 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) QDP (30) TransformationProof [EQUIVALENT, 0 ms] (31) QDP (32) TransformationProof [EQUIVALENT, 0 ms] (33) QDP (34) QDPOrderProof [EQUIVALENT, 77 ms] (35) QDP (36) QDPOrderProof [EQUIVALENT, 80 ms] (37) QDP (38) DependencyGraphProof [EQUIVALENT, 0 ms] (39) AND (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) MNOCProof [EQUIVALENT, 0 ms] (44) QDP (45) TransformationProof [EQUIVALENT, 0 ms] (46) QDP (47) UsableRulesProof [EQUIVALENT, 0 ms] (48) QDP (49) QReductionProof [EQUIVALENT, 0 ms] (50) QDP (51) TransformationProof [EQUIVALENT, 0 ms] (52) QDP (53) NonTerminationLoopProof [COMPLETE, 2 ms] (54) NO (55) QDP (56) QDPOrderProof [EQUIVALENT, 153 ms] (57) QDP (58) PisEmptyProof [EQUIVALENT, 0 ms] (59) YES (60) QDP (61) QDPOrderProof [EQUIVALENT, 69 ms] (62) QDP (63) DependencyGraphProof [EQUIVALENT, 0 ms] (64) AND (65) QDP (66) QDPOrderProof [EQUIVALENT, 37 ms] (67) QDP (68) PisEmptyProof [EQUIVALENT, 0 ms] (69) YES (70) QDP (71) TransformationProof [EQUIVALENT, 0 ms] (72) QDP (73) TransformationProof [EQUIVALENT, 0 ms] (74) QDP (75) DependencyGraphProof [EQUIVALENT, 0 ms] (76) QDP (77) TransformationProof [EQUIVALENT, 0 ms] (78) QDP (79) DependencyGraphProof [EQUIVALENT, 0 ms] (80) QDP (81) TransformationProof [EQUIVALENT, 0 ms] (82) QDP (83) DependencyGraphProof [EQUIVALENT, 0 ms] (84) QDP (85) TransformationProof [EQUIVALENT, 0 ms] (86) QDP (87) TransformationProof [EQUIVALENT, 0 ms] (88) QDP (89) DependencyGraphProof [EQUIVALENT, 0 ms] (90) QDP (91) TransformationProof [EQUIVALENT, 0 ms] (92) QDP (93) TransformationProof [EQUIVALENT, 0 ms] (94) QDP (95) QDPOrderProof [EQUIVALENT, 78 ms] (96) QDP (97) QDPOrderProof [EQUIVALENT, 29 ms] (98) QDP (99) DependencyGraphProof [EQUIVALENT, 0 ms] (100) AND (101) QDP (102) UsableRulesProof [EQUIVALENT, 0 ms] (103) QDP (104) MNOCProof [EQUIVALENT, 0 ms] (105) QDP (106) QDP (107) QDP (108) QDPOrderProof [EQUIVALENT, 71 ms] (109) QDP (110) DependencyGraphProof [EQUIVALENT, 0 ms] (111) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(IL) -> ISNATLIST(activate(IL)) ISNATILIST(IL) -> ACTIVATE(IL) ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNAT(n__length(L)) -> ACTIVATE(L) ISNATILIST(n__cons(N, IL)) -> AND(isNat(activate(N)), isNatIList(activate(IL))) ISNATILIST(n__cons(N, IL)) -> ISNAT(activate(N)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(N) ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(IL) ISNATLIST(n__cons(N, L)) -> AND(isNat(activate(N)), isNatList(activate(L))) ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) ISNATLIST(n__take(N, IL)) -> AND(isNat(activate(N)), isNatIList(activate(IL))) ISNATLIST(n__take(N, IL)) -> ISNAT(activate(N)) ISNATLIST(n__take(N, IL)) -> ACTIVATE(N) ISNATLIST(n__take(N, IL)) -> ISNATILIST(activate(IL)) ISNATLIST(n__take(N, IL)) -> ACTIVATE(IL) ZEROS -> CONS(0, n__zeros) ZEROS -> 0^1 TAKE(0, IL) -> UTAKE1(isNatIList(IL)) TAKE(0, IL) -> ISNATILIST(IL) UTAKE1(tt) -> NIL TAKE(s(M), cons(N, IL)) -> UTAKE2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) TAKE(s(M), cons(N, IL)) -> AND(isNat(M), and(isNat(N), isNatIList(activate(IL)))) TAKE(s(M), cons(N, IL)) -> ISNAT(M) TAKE(s(M), cons(N, IL)) -> AND(isNat(N), isNatIList(activate(IL))) TAKE(s(M), cons(N, IL)) -> ISNAT(N) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) UTAKE2(tt, M, N, IL) -> CONS(activate(N), n__take(activate(M), activate(IL))) UTAKE2(tt, M, N, IL) -> ACTIVATE(N) UTAKE2(tt, M, N, IL) -> ACTIVATE(M) UTAKE2(tt, M, N, IL) -> ACTIVATE(IL) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) LENGTH(cons(N, L)) -> AND(isNat(N), isNatList(activate(L))) LENGTH(cons(N, L)) -> ISNAT(N) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> S(length(activate(L))) ULENGTH(tt, L) -> LENGTH(activate(L)) ULENGTH(tt, L) -> ACTIVATE(L) ACTIVATE(n__0) -> 0^1 ACTIVATE(n__s(X)) -> S(X) ACTIVATE(n__length(X)) -> LENGTH(X) ACTIVATE(n__zeros) -> ZEROS ACTIVATE(n__cons(X1, X2)) -> CONS(X1, X2) ACTIVATE(n__nil) -> NIL ACTIVATE(n__take(X1, X2)) -> TAKE(X1, X2) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 17 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ACTIVATE(n__length(X)) -> LENGTH(X) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ACTIVATE(n__take(X1, X2)) -> TAKE(X1, X2) TAKE(0, IL) -> ISNATILIST(IL) ISNATILIST(IL) -> ISNATLIST(activate(IL)) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) ISNATLIST(n__take(N, IL)) -> ISNAT(activate(N)) ISNAT(n__length(L)) -> ACTIVATE(L) ISNATLIST(n__take(N, IL)) -> ACTIVATE(N) ISNATLIST(n__take(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(IL) -> ACTIVATE(IL) ISNATILIST(n__cons(N, IL)) -> ISNAT(activate(N)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(N) ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(IL) ISNATLIST(n__take(N, IL)) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> UTAKE2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) UTAKE2(tt, M, N, IL) -> ACTIVATE(N) UTAKE2(tt, M, N, IL) -> ACTIVATE(M) UTAKE2(tt, M, N, IL) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> ISNAT(M) TAKE(s(M), cons(N, IL)) -> ISNAT(N) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__take(X1, X2)) -> TAKE(X1, X2) ISNATILIST(IL) -> ISNATLIST(activate(IL)) ISNATLIST(n__take(N, IL)) -> ISNAT(activate(N)) ISNATLIST(n__take(N, IL)) -> ACTIVATE(N) ISNATLIST(n__take(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(IL) -> ACTIVATE(IL) ISNATILIST(n__cons(N, IL)) -> ISNAT(activate(N)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(N) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(IL) ISNATLIST(n__take(N, IL)) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> UTAKE2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) TAKE(s(M), cons(N, IL)) -> ISNAT(M) TAKE(s(M), cons(N, IL)) -> ISNAT(N) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNAT_1(x_1) ) = 2x_1 POL( ISNATILIST_1(x_1) ) = 2x_1 + 1 POL( ISNATLIST_1(x_1) ) = 2x_1 POL( LENGTH_1(x_1) ) = 2x_1 POL( ULENGTH_2(x_1, x_2) ) = 2x_2 POL( UTAKE2_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + 2x_4 POL( and_2(x_1, x_2) ) = 2x_2 POL( cons_2(x_1, x_2) ) = x_1 + x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = 0 POL( uLength_2(x_1, x_2) ) = 2x_2 POL( uTake2_4(x_1, ..., x_4) ) = x_2 + 2x_3 + 2x_4 + 1 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = x_1 + 2x_2 + 1 POL( length_1(x_1) ) = 2x_1 POL( s_1(x_1) ) = x_1 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = x_1 POL( n__length_1(x_1) ) = 2x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = x_1 + x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( take_2(x_1, x_2) ) = x_1 + 2x_2 + 1 POL( tt ) = 0 POL( uTake1_1(x_1) ) = 1 POL( ACTIVATE_1(x_1) ) = 2x_1 POL( TAKE_2(x_1, x_2) ) = 2x_1 + 2x_2 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) length(X) -> n__length(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ACTIVATE(n__length(X)) -> LENGTH(X) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) TAKE(0, IL) -> ISNATILIST(IL) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) ISNAT(n__length(L)) -> ACTIVATE(L) ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) UTAKE2(tt, M, N, IL) -> ACTIVATE(N) UTAKE2(tt, M, N, IL) -> ACTIVATE(M) UTAKE2(tt, M, N, IL) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0),ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0)) (ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(x0)),ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(x0))) (ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)),ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0))) (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros)) (ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)),ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1))) (ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil),ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil)) (ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)),ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1))) (ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0),ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0) ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(x0)) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(n__0),ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(n__0)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(x0)) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(n__0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(x0)) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(x0)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(n__s(x0)),ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(n__s(x0))) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(n__s(x0)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros))) (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__zeros),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__zeros)) ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__zeros) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(x0, x1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1)),ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1))) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(n__nil),ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(n__nil)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(n__nil) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros))) (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros))) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros))) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(x0)) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(n__cons(x0, x1)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATILIST_1(x_1) ) = max{0, x_1 - 2} POL( length_1(x_1) ) = x_1 + 2 POL( cons_2(x_1, x_2) ) = 2x_2 + 2 POL( uLength_2(x_1, x_2) ) = x_2 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNat_1(x_1) ) = 2 POL( isNatList_1(x_1) ) = 0 POL( activate_1(x_1) ) = 2x_1 + 2 POL( n__length_1(x_1) ) = x_1 + 2 POL( take_2(x_1, x_2) ) = 2 POL( 0 ) = 0 POL( uTake1_1(x_1) ) = 0 POL( isNatIList_1(x_1) ) = 0 POL( s_1(x_1) ) = max{0, -2} POL( uTake2_4(x_1, ..., x_4) ) = 2 POL( n__take_2(x_1, x_2) ) = 0 POL( n__cons_2(x_1, x_2) ) = x_2 + 2 POL( n__0 ) = 0 POL( tt ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__zeros ) = 0 POL( zeros ) = 2 POL( n__nil ) = 0 POL( nil ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) length(X) -> n__length(X) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) 0 -> n__0 activate(n__length(X)) -> length(X) isNat(n__0) -> tt activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(X) -> X isNatList(n__nil) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) activate(n__take(X1, X2)) -> take(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATILIST_1(x_1) ) = x_1 + 2 POL( take_2(x_1, x_2) ) = 1 POL( 0 ) = 0 POL( uTake1_1(x_1) ) = 1 POL( isNatIList_1(x_1) ) = max{0, -2} POL( s_1(x_1) ) = max{0, -2} POL( cons_2(x_1, x_2) ) = x_2 + 1 POL( uTake2_4(x_1, ..., x_4) ) = 1 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( activate_1(x_1) ) = 1 POL( n__take_2(x_1, x_2) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( n__cons_2(x_1, x_2) ) = x_2 + 1 POL( uLength_2(x_1, x_2) ) = max{0, -2} POL( length_1(x_1) ) = 1 POL( n__0 ) = 0 POL( n__length_1(x_1) ) = 1 POL( tt ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__nil ) = 0 POL( nil ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) activate(n__length(X)) -> length(X) length(X) -> n__length(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) isNat(n__0) -> tt isNatList(n__nil) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) activate(n__take(X1, X2)) -> take(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) nil -> n__nil ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (39) Complex Obligation (AND) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) at position [0,0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros))) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) R is empty. The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 0 ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)),ISNATILIST(n__cons(n__0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros))) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = ISNATILIST(n__cons(n__0, n__zeros)) evaluates to t =ISNATILIST(n__cons(n__0, n__zeros)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from ISNATILIST(n__cons(n__0, n__zeros)) to ISNATILIST(n__cons(n__0, n__zeros)). ---------------------------------------- (54) NO ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(x0, x1)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ISNATILIST(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__cons(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__take(x_1, x_2)) = [[3A]] + [[3A]] * x_1 + [[3A]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[3A]] + [[3A]] * x_1 + [[3A]] * x_2 >>> <<< POL(0) = [[3A]] >>> <<< POL(uTake1(x_1)) = [[5A]] + [[0A]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(uTake2(x_1, x_2, x_3, x_4)) = [[-I]] + [[4A]] * x_1 + [[4A]] * x_2 + [[-I]] * x_3 + [[4A]] * x_4 >>> <<< POL(and(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNat(x_1)) = [[0A]] + [[2A]] * x_1 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(uLength(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 >>> <<< POL(isNatList(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__0) = [[3A]] >>> <<< POL(tt) = [[2A]] >>> <<< POL(n__s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) activate(n__length(X)) -> length(X) length(X) -> n__length(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) isNat(n__0) -> tt activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(X) -> X isNatList(n__nil) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) activate(n__take(X1, X2)) -> take(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (57) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (59) YES ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ACTIVATE(n__length(X)) -> LENGTH(X) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNAT(n__length(L)) -> ACTIVATE(L) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__length(X)) -> LENGTH(X) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNAT(n__length(L)) -> ACTIVATE(L) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNAT_1(x_1) ) = 2x_1 POL( ISNATLIST_1(x_1) ) = 2x_1 POL( LENGTH_1(x_1) ) = x_1 POL( ULENGTH_2(x_1, x_2) ) = x_2 POL( and_2(x_1, x_2) ) = 2x_2 POL( cons_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( uLength_2(x_1, x_2) ) = 2x_2 + 1 POL( uTake2_4(x_1, ..., x_4) ) = 2x_3 + 2x_4 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = x_2 POL( length_1(x_1) ) = 2x_1 + 1 POL( s_1(x_1) ) = x_1 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = x_1 POL( n__length_1(x_1) ) = 2x_1 + 1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( take_2(x_1, x_2) ) = x_2 POL( tt ) = 0 POL( uTake1_1(x_1) ) = max{0, -2} POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) and(tt, T) -> T length(X) -> n__length(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 8 less nodes. ---------------------------------------- (64) Complex Obligation (AND) ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(n__s(N)) -> ISNAT(activate(N)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNAT(n__s(N)) -> ISNAT(activate(N)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ISNAT(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__s(x_1)) = [[2A]] + [[1A]] * x_1 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(n__0) = [[0A]] >>> <<< POL(0) = [[0A]] >>> <<< POL(s(x_1)) = [[2A]] + [[1A]] * x_1 >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> <<< POL(n__take(x_1, x_2)) = [[2A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[2A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(uLength(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 >>> <<< POL(and(x_1, x_2)) = [[0A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNat(x_1)) = [[-I]] + [[2A]] * x_1 >>> <<< POL(isNatList(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(tt) = [[2A]] >>> <<< POL(uTake1(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(uTake2(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[2A]] * x_2 + [[0A]] * x_3 + [[1A]] * x_4 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X length(X) -> n__length(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) isNat(n__0) -> tt isNatList(n__nil) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (67) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (68) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (69) YES ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0),ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0)) (ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(x0)),ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(x0))) (ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)),ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0))) (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros)) (ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)),ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1))) (ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil),ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil)) (ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)),ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1))) (ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0),ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0)) ---------------------------------------- (72) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0) ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(x0)) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (73) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(n__0),ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(n__0)) ---------------------------------------- (74) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(x0)) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(n__0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (75) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (76) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(x0)) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (77) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(x0)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(n__s(x0)),ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(n__s(x0))) ---------------------------------------- (78) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(n__s(x0)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (79) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (80) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (81) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros))) (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__zeros),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__zeros)) ---------------------------------------- (82) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__zeros) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (83) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (84) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (85) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(x0, x1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1)),ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1))) ---------------------------------------- (86) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (87) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(n__nil),ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(n__nil)) ---------------------------------------- (88) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(n__nil) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (89) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (90) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (91) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros))) (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros))) ---------------------------------------- (92) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (93) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros))) ---------------------------------------- (94) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (95) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(x0)) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(n__cons(x0, x1)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATLIST_1(x_1) ) = max{0, x_1 - 2} POL( length_1(x_1) ) = x_1 + 2 POL( cons_2(x_1, x_2) ) = 2x_2 + 2 POL( uLength_2(x_1, x_2) ) = x_2 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNat_1(x_1) ) = 2 POL( isNatList_1(x_1) ) = 0 POL( activate_1(x_1) ) = 2x_1 + 2 POL( n__length_1(x_1) ) = x_1 + 2 POL( take_2(x_1, x_2) ) = 2 POL( 0 ) = 0 POL( uTake1_1(x_1) ) = 0 POL( isNatIList_1(x_1) ) = 0 POL( s_1(x_1) ) = max{0, -2} POL( uTake2_4(x_1, ..., x_4) ) = 2 POL( n__take_2(x_1, x_2) ) = 0 POL( n__cons_2(x_1, x_2) ) = x_2 + 2 POL( n__0 ) = 0 POL( tt ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__zeros ) = 0 POL( zeros ) = 2 POL( n__nil ) = 0 POL( nil ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) length(X) -> n__length(X) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) 0 -> n__0 activate(n__length(X)) -> length(X) isNat(n__0) -> tt activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(X) -> X isNatList(n__nil) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) activate(n__take(X1, X2)) -> take(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (96) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (97) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATLIST_1(x_1) ) = x_1 + 2 POL( take_2(x_1, x_2) ) = 1 POL( 0 ) = 0 POL( uTake1_1(x_1) ) = 1 POL( isNatIList_1(x_1) ) = max{0, -2} POL( s_1(x_1) ) = max{0, -2} POL( cons_2(x_1, x_2) ) = x_2 + 1 POL( uTake2_4(x_1, ..., x_4) ) = 1 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( activate_1(x_1) ) = 1 POL( n__take_2(x_1, x_2) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( n__cons_2(x_1, x_2) ) = x_2 + 1 POL( uLength_2(x_1, x_2) ) = max{0, -2} POL( length_1(x_1) ) = 1 POL( n__0 ) = 0 POL( n__length_1(x_1) ) = 1 POL( tt ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__nil ) = 0 POL( nil ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) activate(n__length(X)) -> length(X) length(X) -> n__length(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) isNat(n__0) -> tt isNatList(n__nil) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) activate(n__take(X1, X2)) -> take(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) nil -> n__nil ---------------------------------------- (98) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (99) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (100) Complex Obligation (AND) ---------------------------------------- (101) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (102) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (103) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (104) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (105) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (106) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(x0, x1)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (107) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (108) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ULENGTH(tt, L) -> LENGTH(activate(L)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(LENGTH(x_1)) = [[4A]] + [[2A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(ULENGTH(x_1, x_2)) = [[-I]] + [[3A]] * x_1 + [[3A]] * x_2 >>> <<< POL(and(x_1, x_2)) = [[0A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNat(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(isNatList(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(tt) = [[2A]] >>> <<< POL(n__0) = [[0A]] >>> <<< POL(n__s(x_1)) = [[4A]] + [[1A]] * x_1 >>> <<< POL(n__length(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(0) = [[0A]] >>> <<< POL(s(x_1)) = [[4A]] + [[1A]] * x_1 >>> <<< POL(length(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__cons(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> <<< POL(n__take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNatIList(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(uLength(x_1, x_2)) = [[-I]] + [[2A]] * x_1 + [[2A]] * x_2 >>> <<< POL(uTake1(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(uTake2(x_1, x_2, x_3, x_4)) = [[4A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[-I]] * x_3 + [[1A]] * x_4 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) and(tt, T) -> T length(X) -> n__length(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) cons(X1, X2) -> n__cons(X1, X2) uLength(tt, L) -> s(length(activate(L))) s(X) -> n__s(X) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (109) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__length(X)) -> length(X) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (110) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (111) TRUE