/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) MNOCProof [EQUIVALENT, 0 ms] (19) QDP (20) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (21) QDP (22) TransformationProof [EQUIVALENT, 0 ms] (23) QDP (24) TransformationProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) NonTerminationLoopProof [COMPLETE, 0 ms] (29) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: fact(X) -> if(zero(X), n__s(0), n__prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) zero(0) -> true zero(s(X)) -> false p(s(X)) -> X s(X) -> n__s(X) prod(X1, X2) -> n__prod(X1, X2) activate(n__s(X)) -> s(X) activate(n__prod(X1, X2)) -> prod(X1, X2) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> IF(zero(X), n__s(0), n__prod(X, fact(p(X)))) FACT(X) -> ZERO(X) FACT(X) -> FACT(p(X)) FACT(X) -> P(X) ADD(s(X), Y) -> S(add(X, Y)) ADD(s(X), Y) -> ADD(X, Y) PROD(s(X), Y) -> ADD(Y, prod(X, Y)) PROD(s(X), Y) -> PROD(X, Y) IF(true, X, Y) -> ACTIVATE(X) IF(false, X, Y) -> ACTIVATE(Y) ACTIVATE(n__s(X)) -> S(X) ACTIVATE(n__prod(X1, X2)) -> PROD(X1, X2) The TRS R consists of the following rules: fact(X) -> if(zero(X), n__s(0), n__prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) zero(0) -> true zero(s(X)) -> false p(s(X)) -> X s(X) -> n__s(X) prod(X1, X2) -> n__prod(X1, X2) activate(n__s(X)) -> s(X) activate(n__prod(X1, X2)) -> prod(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 9 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) The TRS R consists of the following rules: fact(X) -> if(zero(X), n__s(0), n__prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) zero(0) -> true zero(s(X)) -> false p(s(X)) -> X s(X) -> n__s(X) prod(X1, X2) -> n__prod(X1, X2) activate(n__s(X)) -> s(X) activate(n__prod(X1, X2)) -> prod(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(s(X), Y) -> ADD(X, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(s(X), Y) -> PROD(X, Y) The TRS R consists of the following rules: fact(X) -> if(zero(X), n__s(0), n__prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) zero(0) -> true zero(s(X)) -> false p(s(X)) -> X s(X) -> n__s(X) prod(X1, X2) -> n__prod(X1, X2) activate(n__s(X)) -> s(X) activate(n__prod(X1, X2)) -> prod(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(s(X), Y) -> PROD(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PROD(s(X), Y) -> PROD(X, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) The TRS R consists of the following rules: fact(X) -> if(zero(X), n__s(0), n__prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) zero(0) -> true zero(s(X)) -> false p(s(X)) -> X s(X) -> n__s(X) prod(X1, X2) -> n__prod(X1, X2) activate(n__s(X)) -> s(X) activate(n__prod(X1, X2)) -> prod(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) The TRS R consists of the following rules: p(s(X)) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) The TRS R consists of the following rules: p(s(X)) -> X The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: p(s(X)) -> X Used ordering: POLO with Polynomial interpretation [POLO]: POL(FACT(x_1)) = x_1 POL(p(x_1)) = x_1 POL(s(x_1)) = x_1 ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) R is empty. The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule FACT(X) -> FACT(p(X)) we obtained the following new rules [LPAR04]: (FACT(p(z0)) -> FACT(p(p(z0))),FACT(p(z0)) -> FACT(p(p(z0)))) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(p(z0)) -> FACT(p(p(z0))) R is empty. The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule FACT(p(z0)) -> FACT(p(p(z0))) we obtained the following new rules [LPAR04]: (FACT(p(p(z0))) -> FACT(p(p(p(z0)))),FACT(p(p(z0))) -> FACT(p(p(p(z0))))) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(p(p(z0))) -> FACT(p(p(p(z0)))) R is empty. The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. p(s(x0)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(p(p(z0))) -> FACT(p(p(p(z0)))) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (28) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = FACT(p(p(z0))) evaluates to t =FACT(p(p(p(z0)))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [z0 / p(z0)] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from FACT(p(p(z0))) to FACT(p(p(p(z0)))). ---------------------------------------- (29) NO