/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSToCSRProof [EQUIVALENT, 0 ms] (2) CSR (3) CSRInnermostProof [EQUIVALENT, 0 ms] (4) CSR (5) CSDependencyPairsProof [EQUIVALENT, 21 ms] (6) QCSDP (7) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QCSDP (10) QCSDPSubtermProof [EQUIVALENT, 0 ms] (11) QCSDP (12) PIsEmptyProof [EQUIVALENT, 0 ms] (13) YES (14) QCSDP (15) QCSDPSubtermProof [EQUIVALENT, 0 ms] (16) QCSDP (17) PIsEmptyProof [EQUIVALENT, 0 ms] (18) YES (19) QCSDP (20) QCSDPSubtermProof [EQUIVALENT, 0 ms] (21) QCSDP (22) PIsEmptyProof [EQUIVALENT, 0 ms] (23) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(fib(N)) -> mark(sel(N, fib1(s(0), s(0)))) active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(sel(0, cons(X, XS))) -> mark(X) active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS)) active(fib(X)) -> fib(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(fib1(X1, X2)) -> fib1(active(X1), X2) active(fib1(X1, X2)) -> fib1(X1, active(X2)) active(s(X)) -> s(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fib(mark(X)) -> mark(fib(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) fib1(mark(X1), X2) -> mark(fib1(X1, X2)) fib1(X1, mark(X2)) -> mark(fib1(X1, X2)) s(mark(X)) -> mark(s(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fib(X)) -> fib(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) fib(ok(X)) -> ok(fib(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2)) s(ok(X)) -> ok(s(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. ---------------------------------------- (1) QTRSToCSRProof (EQUIVALENT) The following Q TRS is given: Q restricted rewrite system: The TRS R consists of the following rules: active(fib(N)) -> mark(sel(N, fib1(s(0), s(0)))) active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(sel(0, cons(X, XS))) -> mark(X) active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS)) active(fib(X)) -> fib(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(fib1(X1, X2)) -> fib1(active(X1), X2) active(fib1(X1, X2)) -> fib1(X1, active(X2)) active(s(X)) -> s(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fib(mark(X)) -> mark(fib(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) fib1(mark(X1), X2) -> mark(fib1(X1, X2)) fib1(X1, mark(X2)) -> mark(fib1(X1, X2)) s(mark(X)) -> mark(s(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fib(X)) -> fib(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) fib(ok(X)) -> ok(fib(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2)) s(ok(X)) -> ok(s(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. Special symbols used for the transformation (see [GM04]): top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 The replacement map contains the following entries: fib: {1} sel: {1, 2} fib1: {1, 2} s: {1} 0: empty set cons: {1} add: {1, 2} The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound). ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The replacement map contains the following entries: fib: {1} sel: {1, 2} fib1: {1, 2} s: {1} 0: empty set cons: {1} add: {1, 2} ---------------------------------------- (3) CSRInnermostProof (EQUIVALENT) The CSR is orthogonal. By [CS_Inn] we can switch to innermost. ---------------------------------------- (4) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The replacement map contains the following entries: fib: {1} sel: {1, 2} fib1: {1, 2} s: {1} 0: empty set cons: {1} add: {1, 2} Innermost Strategy. ---------------------------------------- (5) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (6) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {fib_1, sel_2, fib1_2, s_1, add_2, SEL_2, FIB_1, FIB1_2, ADD_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The symbols in {U_1} are not replacing on any position. The ordinary context-sensitive dependency pairs DP_o are: FIB(N) -> SEL(N, fib1(s(0), s(0))) FIB(N) -> FIB1(s(0), s(0)) ADD(s(X), Y) -> ADD(X, Y) SEL(s(N), cons(X, XS)) -> SEL(N, XS) The collapsing dependency pairs are DP_c: SEL(s(N), cons(X, XS)) -> XS The hidden terms of R are: fib1(x0, add(x1, x0)) add(x0, x1) Every hiding context is built from: aprove.DPFramework.CSDPProblem.QCSDPProblem$1@146277ae aprove.DPFramework.CSDPProblem.QCSDPProblem$1@5af443dd Hence, the new unhiding pairs DP_u are : SEL(s(N), cons(X, XS)) -> U(XS) U(add(x_0, x_1)) -> U(x_0) U(add(x_0, x_1)) -> U(x_1) U(fib1(x_0, x_1)) -> U(x_0) U(fib1(x_0, x_1)) -> U(x_1) U(fib1(x0, add(x1, x0))) -> FIB1(x0, add(x1, x0)) U(add(x0, x1)) -> ADD(x0, x1) The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The set Q consists of the following terms: fib(x0) fib1(x0, x1) add(0, x0) add(s(x0), x1) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (7) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 4 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {fib_1, sel_2, fib1_2, s_1, add_2, ADD_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The set Q consists of the following terms: fib(x0) fib1(x0, x1) add(0, x0) add(s(x0), x1) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (10) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. ADD(s(X), Y) -> ADD(X, Y) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. ADD(x1, x2) = x1 Subterm Order ---------------------------------------- (11) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The set Q consists of the following terms: fib(x0) fib1(x0, x1) add(0, x0) add(s(x0), x1) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (12) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The symbols in {U_1} are not replacing on any position. The TRS P consists of the following rules: U(add(x_0, x_1)) -> U(x_0) U(add(x_0, x_1)) -> U(x_1) U(fib1(x_0, x_1)) -> U(x_0) U(fib1(x_0, x_1)) -> U(x_1) The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The set Q consists of the following terms: fib(x0) fib1(x0, x1) add(0, x0) add(s(x0), x1) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (15) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. U(add(x_0, x_1)) -> U(x_0) U(add(x_0, x_1)) -> U(x_1) U(fib1(x_0, x_1)) -> U(x_0) U(fib1(x_0, x_1)) -> U(x_1) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. U(x1) = x1 Subterm Order ---------------------------------------- (16) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The set Q consists of the following terms: fib(x0) fib1(x0, x1) add(0, x0) add(s(x0), x1) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (17) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {fib_1, sel_2, fib1_2, s_1, add_2, SEL_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: SEL(s(N), cons(X, XS)) -> SEL(N, XS) The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The set Q consists of the following terms: fib(x0) fib1(x0, x1) add(0, x0) add(s(x0), x1) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (20) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. SEL(s(N), cons(X, XS)) -> SEL(N, XS) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. SEL(x1, x2) = x1 Subterm Order ---------------------------------------- (21) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) The set Q consists of the following terms: fib(x0) fib1(x0, x1) add(0, x0) add(s(x0), x1) sel(0, cons(x0, x1)) sel(s(x0), cons(x1, x2)) ---------------------------------------- (22) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (23) YES