/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o add : [o * o] --> o cons : [o] --> o from : [o] --> o fst : [o * o] --> o len : [o] --> o nil : [] --> o s : [] --> o fst(0, X) => nil fst(s, cons(X)) => cons(X) from(X) => cons(X) add(0, X) => X add(s, X) => s len(nil) => 0 len(cons(X)) => s As the system is orthogonal, it is terminating if it is innermost terminating by [Gra95]. Then, by [FuhGieParSchSwi11], it suffices to prove (innermost) termination of the typed system, with sort annotations chosen to respect the rules, as follows: 0 : [] --> za add : [za * za] --> za cons : [za] --> ya from : [za] --> ya fst : [za * ya] --> ya len : [ya] --> za nil : [] --> ya s : [] --> za We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): fst(0, X) >? nil fst(s, cons(X)) >? cons(X) from(X) >? cons(X) add(0, X) >? X add(s, X) >? s len(nil) >? 0 len(cons(X)) >? s We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 add = \y0y1.3 + y1 + 3y0 cons = \y0.y0 from = \y0.3 + 3y0 fst = \y0y1.3 + 3y0 + 3y1 len = \y0.3 + 3y0 nil = 0 s = 0 Using this interpretation, the requirements translate to: [[fst(0, _x0)]] = 3 + 3x0 > 0 = [[nil]] [[fst(s, cons(_x0))]] = 3 + 3x0 > x0 = [[cons(_x0)]] [[from(_x0)]] = 3 + 3x0 > x0 = [[cons(_x0)]] [[add(0, _x0)]] = 3 + x0 > x0 = [[_x0]] [[add(s, _x0)]] = 3 + x0 > 0 = [[s]] [[len(nil)]] = 3 > 0 = [[0]] [[len(cons(_x0))]] = 3 + 3x0 > 0 = [[s]] We can thus remove the following rules: fst(0, X) => nil fst(s, cons(X)) => cons(X) from(X) => cons(X) add(0, X) => X add(s, X) => s len(nil) => 0 len(cons(X)) => s All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [FuhGieParSchSwi11] C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. Proving Termination by Dependency Pairs and Inductive Theorem Proving. In volume 47(2) of Journal of Automated Reasoning. 133--160, 2011. [Gra95] B. Gramlich. Abstract Relations Between Restricted Termination and Confluence Properties of Rewrite Systems. In volume 24(1-2) of Fundamentae Informaticae. 3--23, 1995. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.