/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 250 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) QDPOrderProof [EQUIVALENT, 114 ms] (11) QDP (12) DependencyGraphProof [EQUIVALENT, 0 ms] (13) AND (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) QDPOrderProof [EQUIVALENT, 151 ms] (21) QDP (22) PisEmptyProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 0 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 10 ms] (36) QDP (37) DependencyGraphProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 24 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 19 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 43 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 41 ms] (46) QDP (47) QDPOrderProof [EQUIVALENT, 37 ms] (48) QDP (49) DependencyGraphProof [EQUIVALENT, 0 ms] (50) AND (51) QDP (52) UsableRulesProof [EQUIVALENT, 0 ms] (53) QDP (54) MNOCProof [EQUIVALENT, 0 ms] (55) QDP (56) QDP (57) QDP (58) QDPOrderProof [EQUIVALENT, 166 ms] (59) QDP (60) DependencyGraphProof [EQUIVALENT, 0 ms] (61) TRUE (62) QDP (63) TransformationProof [EQUIVALENT, 0 ms] (64) QDP (65) TransformationProof [EQUIVALENT, 0 ms] (66) QDP (67) DependencyGraphProof [EQUIVALENT, 1 ms] (68) QDP (69) TransformationProof [EQUIVALENT, 0 ms] (70) QDP (71) DependencyGraphProof [EQUIVALENT, 0 ms] (72) QDP (73) TransformationProof [EQUIVALENT, 9 ms] (74) QDP (75) DependencyGraphProof [EQUIVALENT, 0 ms] (76) QDP (77) TransformationProof [EQUIVALENT, 0 ms] (78) QDP (79) TransformationProof [EQUIVALENT, 0 ms] (80) QDP (81) QDPOrderProof [EQUIVALENT, 92 ms] (82) QDP (83) QDPOrderProof [EQUIVALENT, 52 ms] (84) QDP (85) QDPOrderProof [EQUIVALENT, 39 ms] (86) QDP (87) DependencyGraphProof [EQUIVALENT, 0 ms] (88) AND (89) QDP (90) UsableRulesProof [EQUIVALENT, 0 ms] (91) QDP (92) MNOCProof [EQUIVALENT, 0 ms] (93) QDP (94) TransformationProof [EQUIVALENT, 0 ms] (95) QDP (96) UsableRulesProof [EQUIVALENT, 0 ms] (97) QDP (98) QReductionProof [EQUIVALENT, 0 ms] (99) QDP (100) TransformationProof [EQUIVALENT, 0 ms] (101) QDP (102) NonTerminationLoopProof [COMPLETE, 2 ms] (103) NO (104) QDP (105) QDPOrderProof [EQUIVALENT, 127 ms] (106) QDP (107) PisEmptyProof [EQUIVALENT, 0 ms] (108) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(IL) -> ISNATLIST(activate(IL)) ISNATILIST(IL) -> ACTIVATE(IL) ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNAT(n__length(L)) -> ACTIVATE(L) ISNATILIST(n__cons(N, IL)) -> AND(isNat(activate(N)), isNatIList(activate(IL))) ISNATILIST(n__cons(N, IL)) -> ISNAT(activate(N)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(N) ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(IL) ISNATLIST(n__cons(N, L)) -> AND(isNat(activate(N)), isNatList(activate(L))) ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) ISNATLIST(n__take(N, IL)) -> AND(isNat(activate(N)), isNatIList(activate(IL))) ISNATLIST(n__take(N, IL)) -> ISNAT(activate(N)) ISNATLIST(n__take(N, IL)) -> ACTIVATE(N) ISNATLIST(n__take(N, IL)) -> ISNATILIST(activate(IL)) ISNATLIST(n__take(N, IL)) -> ACTIVATE(IL) ZEROS -> CONS(0, n__zeros) ZEROS -> 0^1 TAKE(0, IL) -> UTAKE1(isNatIList(IL)) TAKE(0, IL) -> ISNATILIST(IL) UTAKE1(tt) -> NIL TAKE(s(M), cons(N, IL)) -> UTAKE2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) TAKE(s(M), cons(N, IL)) -> AND(isNat(M), and(isNat(N), isNatIList(activate(IL)))) TAKE(s(M), cons(N, IL)) -> ISNAT(M) TAKE(s(M), cons(N, IL)) -> AND(isNat(N), isNatIList(activate(IL))) TAKE(s(M), cons(N, IL)) -> ISNAT(N) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) UTAKE2(tt, M, N, IL) -> CONS(activate(N), n__take(activate(M), activate(IL))) UTAKE2(tt, M, N, IL) -> ACTIVATE(N) UTAKE2(tt, M, N, IL) -> ACTIVATE(M) UTAKE2(tt, M, N, IL) -> ACTIVATE(IL) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) LENGTH(cons(N, L)) -> AND(isNat(N), isNatList(activate(L))) LENGTH(cons(N, L)) -> ISNAT(N) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> S(length(activate(L))) ULENGTH(tt, L) -> LENGTH(activate(L)) ULENGTH(tt, L) -> ACTIVATE(L) ACTIVATE(n__0) -> 0^1 ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__length(X)) -> LENGTH(activate(X)) ACTIVATE(n__length(X)) -> ACTIVATE(X) ACTIVATE(n__zeros) -> ZEROS ACTIVATE(n__cons(X1, X2)) -> CONS(activate(X1), X2) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__nil) -> NIL ACTIVATE(n__take(X1, X2)) -> TAKE(activate(X1), activate(X2)) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 17 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__length(X)) -> LENGTH(activate(X)) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ACTIVATE(n__length(X)) -> ACTIVATE(X) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> TAKE(activate(X1), activate(X2)) TAKE(0, IL) -> ISNATILIST(IL) ISNATILIST(IL) -> ISNATLIST(activate(IL)) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X2) ISNATLIST(n__take(N, IL)) -> ISNAT(activate(N)) ISNAT(n__length(L)) -> ACTIVATE(L) ISNATLIST(n__take(N, IL)) -> ACTIVATE(N) ISNATLIST(n__take(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(IL) -> ACTIVATE(IL) ISNATILIST(n__cons(N, IL)) -> ISNAT(activate(N)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(N) ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(IL) ISNATLIST(n__take(N, IL)) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> UTAKE2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) UTAKE2(tt, M, N, IL) -> ACTIVATE(N) UTAKE2(tt, M, N, IL) -> ACTIVATE(M) UTAKE2(tt, M, N, IL) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> ISNAT(M) TAKE(s(M), cons(N, IL)) -> ISNAT(N) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TAKE(0, IL) -> ISNATILIST(IL) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X2) ISNATLIST(n__take(N, IL)) -> ISNAT(activate(N)) ISNATLIST(n__take(N, IL)) -> ACTIVATE(N) ISNATLIST(n__take(N, IL)) -> ISNATILIST(activate(IL)) ISNATLIST(n__take(N, IL)) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> UTAKE2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) UTAKE2(tt, M, N, IL) -> ACTIVATE(N) UTAKE2(tt, M, N, IL) -> ACTIVATE(M) UTAKE2(tt, M, N, IL) -> ACTIVATE(IL) TAKE(s(M), cons(N, IL)) -> ISNAT(M) TAKE(s(M), cons(N, IL)) -> ISNAT(N) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNAT_1(x_1) ) = 2x_1 POL( ISNATILIST_1(x_1) ) = x_1 POL( ISNATLIST_1(x_1) ) = x_1 POL( LENGTH_1(x_1) ) = 2x_1 POL( TAKE_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( ULENGTH_2(x_1, x_2) ) = 2x_2 POL( UTAKE2_4(x_1, ..., x_4) ) = 2x_2 + x_3 + x_4 + 1 POL( and_2(x_1, x_2) ) = 2x_2 POL( cons_2(x_1, x_2) ) = 2x_1 + x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 2x_1 POL( s_1(x_1) ) = x_1 POL( take_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( uLength_2(x_1, x_2) ) = 2x_2 POL( uTake2_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + x_4 + 2 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = x_1 POL( n__length_1(x_1) ) = 2x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = 2x_1 + x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( tt ) = 0 POL( uTake1_1(x_1) ) = 0 POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) s(X) -> n__s(X) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__length(X)) -> LENGTH(activate(X)) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ACTIVATE(n__length(X)) -> ACTIVATE(X) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> TAKE(activate(X1), activate(X2)) ISNATILIST(IL) -> ISNATLIST(activate(IL)) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) ISNAT(n__length(L)) -> ACTIVATE(L) ISNATILIST(IL) -> ACTIVATE(IL) ISNATILIST(n__cons(N, IL)) -> ISNAT(activate(N)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(N) ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) ISNATILIST(n__cons(N, IL)) -> ACTIVATE(IL) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 6 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__length(X)) -> LENGTH(activate(X)) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ISNAT(n__length(L)) -> ACTIVATE(L) ACTIVATE(n__length(X)) -> ACTIVATE(X) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__length(X)) -> LENGTH(activate(X)) ISNAT(n__length(L)) -> ISNATLIST(activate(L)) ISNAT(n__length(L)) -> ACTIVATE(L) ACTIVATE(n__length(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNAT_1(x_1) ) = 2x_1 POL( ISNATLIST_1(x_1) ) = 2x_1 POL( LENGTH_1(x_1) ) = x_1 POL( ULENGTH_2(x_1, x_2) ) = 2x_2 POL( and_2(x_1, x_2) ) = x_2 POL( cons_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = x_1 + 1 POL( s_1(x_1) ) = x_1 POL( take_2(x_1, x_2) ) = x_2 POL( uLength_2(x_1, x_2) ) = 2x_2 + 1 POL( uTake2_4(x_1, ..., x_4) ) = 2x_3 + 2x_4 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = x_2 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = x_1 POL( n__length_1(x_1) ) = x_1 + 1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( tt ) = 0 POL( uTake1_1(x_1) ) = max{0, -2} POL( ACTIVATE_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) and(tt, T) -> T s(X) -> n__s(X) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(n__s(N)) -> ISNAT(activate(N)) ISNAT(n__s(N)) -> ACTIVATE(N) ACTIVATE(n__s(X)) -> ACTIVATE(X) LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNAT(N) ISNATLIST(n__cons(N, L)) -> ISNAT(activate(N)) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ISNATLIST(n__cons(N, L)) -> ACTIVATE(N) ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(N, L)) -> ACTIVATE(L) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) ULENGTH(tt, L) -> ACTIVATE(L) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 8 less nodes. ---------------------------------------- (13) Complex Obligation (AND) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__s(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) The graph contains the following edges 1 > 1 *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(n__s(N)) -> ISNAT(activate(N)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNAT(n__s(N)) -> ISNAT(activate(N)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ISNAT(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(n__0) = [[2A]] >>> <<< POL(0) = [[2A]] >>> <<< POL(s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__cons(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> <<< POL(n__take(x_1, x_2)) = [[2A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[2A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(uTake1(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(tt) = [[2A]] >>> <<< POL(isNatList(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(and(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNat(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(uTake2(x_1, x_2, x_3, x_4)) = [[4A]] + [[-I]] * x_1 + [[2A]] * x_2 + [[-I]] * x_3 + [[1A]] * x_4 >>> <<< POL(uLength(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X s(X) -> n__s(X) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (21) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(N, L)) -> ISNATLIST(activate(L)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0),ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0)) (ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))),ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0)))) (ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))),ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0)))) (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros)) (ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)),ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1))) (ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil),ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil)) (ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))),ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1)))) (ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0),ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0)) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0) ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(0) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(n__0),ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(n__0)) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__0)) -> ISNATLIST(n__0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(zeros) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros))) (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__zeros),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__zeros)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__zeros) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(nil) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(n__nil),ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(n__nil)) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__nil)) -> ISNATLIST(n__nil) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros))) (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)),ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATLIST(n__cons(y0, n__s(x0))) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(y0, n__length(x0))) -> ISNATLIST(length(activate(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATLIST_1(x_1) ) = 2x_1 POL( cons_2(x_1, x_2) ) = 2x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 2x_1 + 1 POL( s_1(x_1) ) = 1 POL( take_2(x_1, x_2) ) = max{0, -2} POL( uLength_2(x_1, x_2) ) = 1 POL( uTake2_4(x_1, ..., x_4) ) = max{0, -2} POL( and_2(x_1, x_2) ) = x_2 POL( isNatIList_1(x_1) ) = 0 POL( n__take_2(x_1, x_2) ) = 0 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = 1 POL( n__length_1(x_1) ) = 2x_1 + 1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = 2x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( uTake1_1(x_1) ) = max{0, -2} POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X s(X) -> n__s(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) 0 -> n__0 isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) uLength(tt, L) -> s(length(activate(L))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATLIST(n__cons(y0, n__cons(x0, x1))) -> ISNATLIST(cons(activate(x0), x1)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATLIST_1(x_1) ) = max{0, x_1 - 1} POL( cons_2(x_1, x_2) ) = x_2 + 1 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = max{0, -2} POL( s_1(x_1) ) = max{0, -2} POL( take_2(x_1, x_2) ) = 2 POL( uLength_2(x_1, x_2) ) = max{0, -2} POL( uTake2_4(x_1, ..., x_4) ) = 2 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = 1 POL( activate_1(x_1) ) = x_1 + 1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__length_1(x_1) ) = 0 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = x_2 + 1 POL( n__nil ) = 0 POL( nil ) = 2 POL( uTake1_1(x_1) ) = 2 POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) cons(X1, X2) -> n__cons(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) s(X) -> n__s(X) length(X) -> n__length(X) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) nil -> n__nil ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATLIST(n__cons(y0, x0)) -> ISNATLIST(x0) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATLIST_1(x_1) ) = max{0, x_1 - 1} POL( cons_2(x_1, x_2) ) = x_2 + 2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 2 POL( s_1(x_1) ) = max{0, -2} POL( take_2(x_1, x_2) ) = 2 POL( uLength_2(x_1, x_2) ) = 2 POL( uTake2_4(x_1, ..., x_4) ) = 2 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = 0 POL( activate_1(x_1) ) = 2x_1 + 2 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__length_1(x_1) ) = 1 POL( n__zeros ) = 1 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = x_2 + 2 POL( n__nil ) = 1 POL( nil ) = 1 POL( uTake1_1(x_1) ) = 2 POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) s(X) -> n__s(X) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) nil -> n__nil ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (50) Complex Obligation (AND) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(y0, n__zeros)) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(y0, n__take(x0, x1))) -> ISNATLIST(take(activate(x0), activate(x1))) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) ULENGTH(tt, L) -> LENGTH(activate(L)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ULENGTH(tt, L) -> LENGTH(activate(L)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(LENGTH(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(ULENGTH(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 >>> <<< POL(and(x_1, x_2)) = [[0A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNat(x_1)) = [[-I]] + [[1A]] * x_1 >>> <<< POL(isNatList(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(tt) = [[3A]] >>> <<< POL(n__0) = [[2A]] >>> <<< POL(n__s(x_1)) = [[4A]] + [[1A]] * x_1 >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(0) = [[2A]] >>> <<< POL(s(x_1)) = [[4A]] + [[1A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__cons(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__nil) = [[3A]] >>> <<< POL(nil) = [[3A]] >>> <<< POL(n__take(x_1, x_2)) = [[3A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[3A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNatIList(x_1)) = [[3A]] + [[0A]] * x_1 >>> <<< POL(uTake1(x_1)) = [[3A]] + [[-I]] * x_1 >>> <<< POL(uTake2(x_1, x_2, x_3, x_4)) = [[4A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[-I]] * x_3 + [[1A]] * x_4 >>> <<< POL(uLength(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) and(tt, T) -> T s(X) -> n__s(X) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) take(X1, X2) -> n__take(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(N, L)) -> ULENGTH(and(isNat(N), isNatList(activate(L))), activate(L)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (61) TRUE ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(N, IL)) -> ISNATILIST(activate(IL)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0),ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0)) (ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))),ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0)))) (ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))),ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0)))) (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros)) (ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)),ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1))) (ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil),ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil)) (ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))),ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1)))) (ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0),ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0)) ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0) ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(0) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(n__0),ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(n__0)) ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__0)) -> ISNATILIST(n__0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (68) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (69) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(zeros) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros))) (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__zeros),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__zeros)) ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__zeros) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (72) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (73) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(nil) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(n__nil),ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(n__nil)) ---------------------------------------- (74) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__nil)) -> ISNATILIST(n__nil) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (75) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (76) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (77) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros))) (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros))) ---------------------------------------- (78) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (79) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros))) ---------------------------------------- (80) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (81) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(y0, n__s(x0))) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(y0, n__length(x0))) -> ISNATILIST(length(activate(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATILIST_1(x_1) ) = 2x_1 POL( cons_2(x_1, x_2) ) = 2x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 2x_1 + 1 POL( s_1(x_1) ) = 1 POL( take_2(x_1, x_2) ) = max{0, -2} POL( uLength_2(x_1, x_2) ) = 1 POL( uTake2_4(x_1, ..., x_4) ) = max{0, -2} POL( and_2(x_1, x_2) ) = x_2 POL( isNatIList_1(x_1) ) = 0 POL( n__take_2(x_1, x_2) ) = 0 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = 1 POL( n__length_1(x_1) ) = 2x_1 + 1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = 2x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( uTake1_1(x_1) ) = max{0, -2} POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X s(X) -> n__s(X) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) 0 -> n__0 isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) uLength(tt, L) -> s(length(activate(L))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (82) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (83) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(y0, n__cons(x0, x1))) -> ISNATILIST(cons(activate(x0), x1)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATILIST_1(x_1) ) = max{0, x_1 - 1} POL( cons_2(x_1, x_2) ) = x_2 + 1 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = max{0, -2} POL( s_1(x_1) ) = max{0, -2} POL( take_2(x_1, x_2) ) = 2 POL( uLength_2(x_1, x_2) ) = max{0, -2} POL( uTake2_4(x_1, ..., x_4) ) = 2 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = 1 POL( activate_1(x_1) ) = x_1 + 1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__length_1(x_1) ) = 0 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = x_2 + 1 POL( n__nil ) = 0 POL( nil ) = 2 POL( uTake1_1(x_1) ) = 2 POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) cons(X1, X2) -> n__cons(X1, X2) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) s(X) -> n__s(X) length(X) -> n__length(X) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) nil -> n__nil ---------------------------------------- (84) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (85) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(y0, x0)) -> ISNATILIST(x0) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNATILIST_1(x_1) ) = max{0, x_1 - 1} POL( cons_2(x_1, x_2) ) = x_2 + 2 POL( isNat_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 2 POL( s_1(x_1) ) = max{0, -2} POL( take_2(x_1, x_2) ) = 2 POL( uLength_2(x_1, x_2) ) = 2 POL( uTake2_4(x_1, ..., x_4) ) = 2 POL( and_2(x_1, x_2) ) = 2x_2 POL( isNatIList_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = 0 POL( activate_1(x_1) ) = 2x_1 + 2 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__s_1(x_1) ) = 0 POL( n__length_1(x_1) ) = 1 POL( n__zeros ) = 1 POL( zeros ) = 0 POL( n__cons_2(x_1, x_2) ) = x_2 + 2 POL( n__nil ) = 1 POL( nil ) = 1 POL( uTake1_1(x_1) ) = 2 POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) s(X) -> n__s(X) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) nil -> n__nil ---------------------------------------- (86) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (87) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (88) Complex Obligation (AND) ---------------------------------------- (89) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (90) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (91) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (92) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (93) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (94) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(0, n__zeros)) at position [0,0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)),ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros))) ---------------------------------------- (95) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: 0 -> n__0 The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (96) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (97) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) R is empty. The set Q consists of the following terms: 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (98) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 0 ---------------------------------------- (99) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (100) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule ISNATILIST(n__cons(y0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)),ISNATILIST(n__cons(n__0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros))) ---------------------------------------- (101) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__0, n__zeros)) -> ISNATILIST(n__cons(n__0, n__zeros)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (102) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = ISNATILIST(n__cons(n__0, n__zeros)) evaluates to t =ISNATILIST(n__cons(n__0, n__zeros)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from ISNATILIST(n__cons(n__0, n__zeros)) to ISNATILIST(n__cons(n__0, n__zeros)). ---------------------------------------- (103) NO ---------------------------------------- (104) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (105) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(y0, n__take(x0, x1))) -> ISNATILIST(take(activate(x0), activate(x1))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ISNATILIST(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(n__0) = [[0A]] >>> <<< POL(0) = [[0A]] >>> <<< POL(n__s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> <<< POL(uTake1(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(uTake2(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[0A]] * x_3 + [[1A]] * x_4 >>> <<< POL(and(x_1, x_2)) = [[0A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNat(x_1)) = [[-I]] + [[5A]] * x_1 >>> <<< POL(tt) = [[2A]] >>> <<< POL(isNatList(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(uLength(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X take(0, IL) -> uTake1(isNatIList(IL)) take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) take(X1, X2) -> n__take(X1, X2) s(X) -> n__s(X) length(X) -> n__length(X) cons(X1, X2) -> n__cons(X1, X2) isNatIList(n__zeros) -> tt uTake1(tt) -> nil isNatIList(IL) -> isNatList(activate(IL)) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNat(n__0) -> tt and(tt, T) -> T isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (106) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (107) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (108) YES