/export/starexec/sandbox/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem: fst(0(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) from(X) -> cons(X,n__from(s(X))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) len(nil()) -> 0() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) from(X) -> n__from(X) add(X1,X2) -> n__add(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__from(X)) -> from(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X Proof: Matrix Interpretation Processor: dim=1 interpretation: [n__len](x0) = x0, [len](x0) = 2x0, [n__add](x0, x1) = x0 + 4x1 + 3, [add](x0, x1) = 2x0 + 4x1 + 5, [n__from](x0) = x0 + 2, [from](x0) = 2x0 + 4, [n__fst](x0, x1) = 2x0 + 2x1, [activate](x0) = 2x0, [cons](x0, x1) = x0 + x1, [s](x0) = x0, [nil] = 0, [fst](x0, x1) = 4x0 + 4x1, [0] = 0 orientation: fst(0(),Z) = 4Z >= 0 = nil() fst(s(X),cons(Y,Z)) = 4X + 4Y + 4Z >= 4X + Y + 4Z = cons(Y,n__fst(activate(X),activate(Z))) from(X) = 2X + 4 >= 2X + 2 = cons(X,n__from(s(X))) add(0(),X) = 4X + 5 >= X = X add(s(X),Y) = 2X + 4Y + 5 >= 2X + 4Y + 3 = s(n__add(activate(X),Y)) len(nil()) = 0 >= 0 = 0() len(cons(X,Z)) = 2X + 2Z >= 2Z = s(n__len(activate(Z))) fst(X1,X2) = 4X1 + 4X2 >= 2X1 + 2X2 = n__fst(X1,X2) from(X) = 2X + 4 >= X + 2 = n__from(X) add(X1,X2) = 2X1 + 4X2 + 5 >= X1 + 4X2 + 3 = n__add(X1,X2) len(X) = 2X >= X = n__len(X) activate(n__fst(X1,X2)) = 4X1 + 4X2 >= 4X1 + 4X2 = fst(X1,X2) activate(n__from(X)) = 2X + 4 >= 2X + 4 = from(X) activate(n__add(X1,X2)) = 2X1 + 8X2 + 6 >= 2X1 + 4X2 + 5 = add(X1,X2) activate(n__len(X)) = 2X >= 2X = len(X) activate(X) = 2X >= X = X problem: fst(0(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) len(nil()) -> 0() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__from(X)) -> from(X) activate(n__len(X)) -> len(X) activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [n__len](x0) = x0 + 1, [len](x0) = x0 + 1, [n__from](x0) = 5x0, [from](x0) = 4x0, [n__fst](x0, x1) = x0 + 4x1 + 3, [activate](x0) = x0, [cons](x0, x1) = x0 + 2x1 + 1, [s](x0) = 2x0, [nil] = 3, [fst](x0, x1) = x0 + 4x1 + 3, [0] = 4 orientation: fst(0(),Z) = 4Z + 7 >= 3 = nil() fst(s(X),cons(Y,Z)) = 2X + 4Y + 8Z + 7 >= 2X + Y + 8Z + 7 = cons(Y,n__fst(activate(X),activate(Z))) len(nil()) = 4 >= 4 = 0() len(cons(X,Z)) = X + 2Z + 2 >= 2Z + 2 = s(n__len(activate(Z))) fst(X1,X2) = X1 + 4X2 + 3 >= X1 + 4X2 + 3 = n__fst(X1,X2) len(X) = X + 1 >= X + 1 = n__len(X) activate(n__fst(X1,X2)) = X1 + 4X2 + 3 >= X1 + 4X2 + 3 = fst(X1,X2) activate(n__from(X)) = 5X >= 4X = from(X) activate(n__len(X)) = X + 1 >= X + 1 = len(X) activate(X) = X >= X = X problem: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) len(nil()) -> 0() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__from(X)) -> from(X) activate(n__len(X)) -> len(X) activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [n__len](x0) = x0, [len](x0) = 2x0, [n__from](x0) = 4x0 + 6, [from](x0) = x0, [n__fst](x0, x1) = x0 + x1 + 4, [activate](x0) = 2x0, [cons](x0, x1) = 4x0 + x1 + 1, [s](x0) = x0 + 1, [nil] = 1, [fst](x0, x1) = 2x0 + 2x1 + 6, [0] = 0 orientation: fst(s(X),cons(Y,Z)) = 2X + 8Y + 2Z + 10 >= 2X + 4Y + 2Z + 5 = cons(Y,n__fst(activate(X),activate(Z))) len(nil()) = 2 >= 0 = 0() len(cons(X,Z)) = 8X + 2Z + 2 >= 2Z + 1 = s(n__len(activate(Z))) fst(X1,X2) = 2X1 + 2X2 + 6 >= X1 + X2 + 4 = n__fst(X1,X2) len(X) = 2X >= X = n__len(X) activate(n__fst(X1,X2)) = 2X1 + 2X2 + 8 >= 2X1 + 2X2 + 6 = fst(X1,X2) activate(n__from(X)) = 8X + 12 >= X = from(X) activate(n__len(X)) = 2X >= 2X = len(X) activate(X) = 2X >= X = X problem: len(X) -> n__len(X) activate(n__len(X)) -> len(X) activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [n__len](x0) = [1 0 0]x0 [0 0 0] , [1 0 0] [1] [len](x0) = [1 0 0]x0 + [0] [0 0 0] [0], [1] [activate](x0) = x0 + [0] [0] orientation: [1 0 0] [1] [1 0 0] len(X) = [1 0 0]X + [0] >= [1 0 0]X = n__len(X) [0 0 0] [0] [0 0 0] [1 0 0] [1] [1 0 0] [1] activate(n__len(X)) = [1 0 0]X + [0] >= [1 0 0]X + [0] = len(X) [0 0 0] [0] [0 0 0] [0] [1] activate(X) = X + [0] >= X = X [0] problem: activate(n__len(X)) -> len(X) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [n__len](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [len](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [1] [activate](x0) = [0 0 0]x0 + [0] [0 0 0] [0] orientation: [1 0 0] [1] [1 0 0] activate(n__len(X)) = [0 0 0]X + [0] >= [0 0 0]X = len(X) [0 0 0] [0] [0 0 0] problem: Qed