/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR X X1 X2 Y Z) (RULES activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__from(X)) -> FROM(X) ACTIVATE(n__fst(X1,X2)) -> FST(X1,X2) ACTIVATE(n__len(X)) -> LEN(X) ADD(s(X),Y) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__from(X)) -> FROM(X) ACTIVATE(n__fst(X1,X2)) -> FST(X1,X2) ACTIVATE(n__len(X)) -> LEN(X) ADD(s(X),Y) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__fst(X1,X2)) -> FST(X1,X2) ACTIVATE(n__len(X)) -> LEN(X) ADD(s(X),Y) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__fst(X1,X2)) -> FST(X1,X2) ACTIVATE(n__len(X)) -> LEN(X) ADD(s(X),Y) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [cons](X1,X2) = 2.X2 + 2 [n__add](X1,X2) = 2.X1 + 2.X2 + 2 [n__fst](X1,X2) = 2.X1 + 2.X2 [n__len](X) = X + 2 [s](X) = 2.X + 2 [ACTIVATE](X) = 2.X + 2 [ADD](X1,X2) = 2.X1 + 2 [FST](X1,X2) = 2.X1 + X2 [LEN](X) = X + 1 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__fst(X1,X2)) -> FST(X1,X2) ACTIVATE(n__len(X)) -> LEN(X) ADD(s(X),Y) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__fst(X1,X2)) -> FST(X1,X2) ACTIVATE(n__len(X)) -> LEN(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__fst(X1,X2)) -> FST(X1,X2) ACTIVATE(n__len(X)) -> LEN(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [cons](X1,X2) = 2.X2 + 2 [n__fst](X1,X2) = X1 + 2.X2 + 1 [n__len](X) = 2.X + 2 [s](X) = 2.X + 2 [ACTIVATE](X) = 2.X + 2 [FST](X1,X2) = 2.X1 + 2.X2 + 2 [LEN](X) = 2.X Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__len(X)) -> LEN(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(X) FST(s(X),cons(Y,Z)) -> ACTIVATE(Z) LEN(cons(X,Z)) -> ACTIVATE(Z) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__len(X)) -> LEN(X) LEN(cons(X,Z)) -> ACTIVATE(Z) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) Problem 1: Subterm Processor: -> Pairs: ACTIVATE(n__len(X)) -> LEN(X) LEN(cons(X,Z)) -> ACTIVATE(Z) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) ->Projection: pi(ACTIVATE) = 1 pi(LEN) = 1 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X add(0,X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(X1,X2) -> n__add(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(0,Z) -> nil fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) fst(X1,X2) -> n__fst(X1,X2) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil) -> 0 len(X) -> n__len(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite.