/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 6 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 81 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) UsableRulesProof [EQUIVALENT, 0 ms] (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVATE(x1) = ACTIVATE(x1) n__first(x1, x2) = n__first(x1, x2) FIRST(x1, x2) = FIRST(x2) activate(x1) = x1 s(x1) = x1 cons(x1, x2) = x2 n__from(x1) = n__from(x1) n__s(x1) = x1 first(x1, x2) = first(x1, x2) from(x1) = from(x1) 0 = 0 nil = nil Recursive path order with status [RPO]. Quasi-Precedence: [n__first_2, first_2] > [ACTIVATE_1, FIRST_1] [n__first_2, first_2] > nil [n__from_1, from_1] > [ACTIVATE_1, FIRST_1] Status: ACTIVATE_1: multiset status n__first_2: multiset status FIRST_1: multiset status n__from_1: multiset status first_2: multiset status from_1: multiset status 0: multiset status nil: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) first(0, X) -> nil first(X1, X2) -> n__first(X1, X2) s(X) -> n__s(X) first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (12) YES