/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSToCSRProof [EQUIVALENT, 0 ms] (2) CSR (3) CSRInnermostProof [EQUIVALENT, 0 ms] (4) CSR (5) CSDependencyPairsProof [EQUIVALENT, 0 ms] (6) QCSDP (7) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QCSDP (10) QCSDPSubtermProof [EQUIVALENT, 0 ms] (11) QCSDP (12) PIsEmptyProof [EQUIVALENT, 0 ms] (13) YES (14) QCSDP (15) QCSDPSubtermProof [EQUIVALENT, 0 ms] (16) QCSDP (17) PIsEmptyProof [EQUIVALENT, 0 ms] (18) YES (19) QCSDP (20) QCSDPSubtermProof [EQUIVALENT, 0 ms] (21) QCSDP (22) PIsEmptyProof [EQUIVALENT, 0 ms] (23) YES (24) QCSDP (25) QCSDPSubtermProof [EQUIVALENT, 0 ms] (26) QCSDP (27) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (28) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. ---------------------------------------- (1) QTRSToCSRProof (EQUIVALENT) The following Q TRS is given: Q restricted rewrite system: The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. Special symbols used for the transformation (see [GM04]): top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 The replacement map contains the following entries: from: {1} cons: {1} s: {1} 2ndspos: {1, 2} 0: empty set rnil: empty set cons2: {2} rcons: {1, 2} posrecip: {1} 2ndsneg: {1, 2} negrecip: {1} pi: {1} plus: {1, 2} times: {1, 2} square: {1} The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound). ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The replacement map contains the following entries: from: {1} cons: {1} s: {1} 2ndspos: {1, 2} 0: empty set rnil: empty set cons2: {2} rcons: {1, 2} posrecip: {1} 2ndsneg: {1, 2} negrecip: {1} pi: {1} plus: {1, 2} times: {1, 2} square: {1} ---------------------------------------- (3) CSRInnermostProof (EQUIVALENT) The CSR is orthogonal. By [CS_Inn] we can switch to innermost. ---------------------------------------- (4) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The replacement map contains the following entries: from: {1} cons: {1} s: {1} 2ndspos: {1, 2} 0: empty set rnil: empty set cons2: {2} rcons: {1, 2} posrecip: {1} 2ndsneg: {1, 2} negrecip: {1} pi: {1} plus: {1, 2} times: {1, 2} square: {1} Innermost Strategy. ---------------------------------------- (5) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (6) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSPOS_2, 2NDSNEG_2, PI_1, FROM_1, PLUS_2, TIMES_2, SQUARE_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The symbols in {U_1} are not replacing on any position. The ordinary context-sensitive dependency pairs DP_o are: 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z) PI(X) -> 2NDSPOS(X, from(0)) PI(X) -> FROM(0) PLUS(s(X), Y) -> PLUS(X, Y) TIMES(s(X), Y) -> PLUS(Y, times(X, Y)) TIMES(s(X), Y) -> TIMES(X, Y) SQUARE(X) -> TIMES(X, X) The collapsing dependency pairs are DP_c: 2NDSPOS(s(N), cons(X, Z)) -> Z 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> Z 2NDSNEG(s(N), cons(X, Z)) -> Z 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> Z The hidden terms of R are: from(s(x0)) Every hiding context is built from: aprove.DPFramework.CSDPProblem.QCSDPProblem$1@4a3dc1d9 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@14dcaab7 Hence, the new unhiding pairs DP_u are : 2NDSPOS(s(N), cons(X, Z)) -> U(Z) 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> U(Z) 2NDSNEG(s(N), cons(X, Z)) -> U(Z) 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> U(Z) U(s(x_0)) -> U(x_0) U(from(x_0)) -> U(x_0) U(from(s(x0))) -> FROM(s(x0)) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (7) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 4 SCCs with 8 less nodes. The rules 2NDSPOS(s(z0), cons(z1, z2)) -> 2NDSPOS(s(z0), cons2(z1, z2)) and 2NDSPOS(s(x0), cons(x1, x2)) -> 2NDSPOS(s(x0), cons2(x1, x2)) form no chain, because ECap^mu(2NDSPOS(s(z0), cons2(z1, z2))) = 2NDSPOS(s(z0), cons2(z1, x_1)) does not unify with 2NDSPOS(s(x0), cons(x1, x2)). The rules 2NDSPOS(s(z0), cons(z1, z2)) -> 2NDSPOS(s(z0), cons2(z1, z2)) and 2NDSPOS(s(x0), cons(x1, x2)) -> U(x2) form no chain, because ECap^mu(2NDSPOS(s(z0), cons2(z1, z2))) = 2NDSPOS(s(z0), cons2(z1, x_1)) does not unify with 2NDSPOS(s(x0), cons(x1, x2)). The rules 2NDSNEG(s(z0), cons(z1, z2)) -> 2NDSNEG(s(z0), cons2(z1, z2)) and 2NDSNEG(s(x0), cons(x1, x2)) -> 2NDSNEG(s(x0), cons2(x1, x2)) form no chain, because ECap^mu(2NDSNEG(s(z0), cons2(z1, z2))) = 2NDSNEG(s(z0), cons2(z1, x_1)) does not unify with 2NDSNEG(s(x0), cons(x1, x2)). The rules 2NDSNEG(s(z0), cons(z1, z2)) -> 2NDSNEG(s(z0), cons2(z1, z2)) and 2NDSNEG(s(x0), cons(x1, x2)) -> U(x2) form no chain, because ECap^mu(2NDSNEG(s(z0), cons2(z1, z2))) = 2NDSNEG(s(z0), cons2(z1, x_1)) does not unify with 2NDSNEG(s(x0), cons(x1, x2)). The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons2(z1, cons(z2, z3))) -> 2NDSNEG(z0, z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons2(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons2(z1, x_3)) does not unify with 2NDSPOS(x0, from(0)). R' = ( cons(X, from(s(X))), from(X)) The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons2(z1, cons(z2, z3))) -> U(z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons2(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons2(z1, x_3)) does not unify with 2NDSPOS(x0, from(0)). R' = ( cons(X, from(s(X))), from(X)) ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The symbols in {U_1} are not replacing on any position. The TRS P consists of the following rules: U(s(x_0)) -> U(x_0) U(from(x_0)) -> U(x_0) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (10) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. U(s(x_0)) -> U(x_0) U(from(x_0)) -> U(x_0) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. U(x1) = x1 Subterm Order ---------------------------------------- (11) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The TRS P consists of the following rules: none The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (12) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, PLUS_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The TRS P consists of the following rules: PLUS(s(X), Y) -> PLUS(X, Y) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (15) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. PLUS(s(X), Y) -> PLUS(X, Y) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. PLUS(x1, x2) = x1 Subterm Order ---------------------------------------- (16) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The TRS P consists of the following rules: none The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (17) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, TIMES_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The TRS P consists of the following rules: TIMES(s(X), Y) -> TIMES(X, Y) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (20) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. TIMES(s(X), Y) -> TIMES(X, Y) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. TIMES(x1, x2) = x1 Subterm Order ---------------------------------------- (21) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The TRS P consists of the following rules: none The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (22) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSNEG_2, 2NDSPOS_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The TRS P consists of the following rules: 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (25) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z) The remaining pairs can at least be oriented weakly. 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) Used ordering: Combined order from the following AFS and order. 2NDSNEG(x1, x2) = x1 2NDSPOS(x1, x2) = x1 Subterm Order ---------------------------------------- (26) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSNEG_2, 2NDSPOS_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. For all symbols f in {cons2_2} we have mu(f) = {2}. The TRS P consists of the following rules: 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, x2)) 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, x2)) 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (27) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 2 less nodes. ---------------------------------------- (28) TRUE