/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. a : [] --> o activate : [o] --> o f : [o] --> o g : [o] --> o n!6220!6220f : [o] --> o f(f(a)) => f(g(n!6220!6220f(a))) f(X) => n!6220!6220f(X) activate(n!6220!6220f(X)) => f(X) activate(X) => X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(f(a)) >? f(g(n!6220!6220f(a))) f(X) >? n!6220!6220f(X) activate(n!6220!6220f(X)) >? f(X) activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a = 3 activate = \y0.3 + 3y0 f = \y0.1 + y0 g = \y0.y0 n!6220!6220f = \y0.y0 Using this interpretation, the requirements translate to: [[f(f(a))]] = 5 > 4 = [[f(g(n!6220!6220f(a)))]] [[f(_x0)]] = 1 + x0 > x0 = [[n!6220!6220f(_x0)]] [[activate(n!6220!6220f(_x0))]] = 3 + 3x0 > 1 + x0 = [[f(_x0)]] [[activate(_x0)]] = 3 + 3x0 > x0 = [[_x0]] We can thus remove the following rules: f(f(a)) => f(g(n!6220!6220f(a))) f(X) => n!6220!6220f(X) activate(n!6220!6220f(X)) => f(X) activate(X) => X All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.