/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 68 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) MRRProof [EQUIVALENT, 11 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 66 ms] (10) QDP (11) QDPOrderProof [EQUIVALENT, 59 ms] (12) QDP (13) TransformationProof [EQUIVALENT, 0 ms] (14) QDP (15) TransformationProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) QDP (21) TransformationProof [EQUIVALENT, 0 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) DependencyGraphProof [EQUIVALENT, 0 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) DependencyGraphProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) DependencyGraphProof [EQUIVALENT, 0 ms] (40) QDP (41) QDPOrderProof [EQUIVALENT, 63 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 358 ms] (44) QDP (45) NonTerminationLoopProof [COMPLETE, 0 ms] (46) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) hd(cons(X, Y)) -> activate(X) tl(cons(X, Y)) -> activate(Y) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(activate(x_1)) = x_1 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(hd(x_1)) = 1 + 2*x_1 POL(incr(x_1)) = x_1 POL(n__0) = 0 POL(n__adx(x_1)) = x_1 POL(n__incr(x_1)) = x_1 POL(n__s(x_1)) = x_1 POL(n__zeros) = 0 POL(nats) = 2 POL(s(x_1)) = x_1 POL(tl(x_1)) = 1 + 2*x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: nats -> adx(zeros) hd(cons(X, Y)) -> activate(X) tl(cons(X, Y)) -> activate(Y) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(X) INCR(cons(X, Y)) -> ACTIVATE(Y) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ADX(cons(X, Y)) -> ACTIVATE(X) ADX(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__0) -> 0^1 ACTIVATE(n__zeros) -> ZEROS ACTIVATE(n__s(X)) -> S(X) ACTIVATE(n__incr(X)) -> INCR(activate(X)) ACTIVATE(n__incr(X)) -> ACTIVATE(X) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ACTIVATE(n__adx(X)) -> ACTIVATE(X) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(X)) -> INCR(activate(X)) INCR(cons(X, Y)) -> ACTIVATE(X) ACTIVATE(n__incr(X)) -> ACTIVATE(X) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__adx(X)) -> ACTIVATE(X) ADX(cons(X, Y)) -> ACTIVATE(X) ADX(cons(X, Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: ACTIVATE(n__adx(X)) -> ACTIVATE(X) ADX(cons(X, Y)) -> ACTIVATE(X) ADX(cons(X, Y)) -> ACTIVATE(Y) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVATE(x_1)) = 2*x_1 POL(ADX(x_1)) = 2 + 2*x_1 POL(INCR(x_1)) = 2*x_1 POL(activate(x_1)) = x_1 POL(adx(x_1)) = 1 + x_1 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(incr(x_1)) = x_1 POL(n__0) = 0 POL(n__adx(x_1)) = 1 + x_1 POL(n__incr(x_1)) = x_1 POL(n__s(x_1)) = x_1 POL(n__zeros) = 0 POL(s(x_1)) = x_1 POL(zeros) = 0 ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(X)) -> INCR(activate(X)) INCR(cons(X, Y)) -> ACTIVATE(X) ACTIVATE(n__incr(X)) -> ACTIVATE(X) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) INCR(cons(X, Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. INCR(cons(X, Y)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVATE(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__incr(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(INCR(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(activate(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(n__adx(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(ADX(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(n__0) = [[0A]] >>> <<< POL(0) = [[0A]] >>> <<< POL(n__zeros) = [[1A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(incr(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(adx(x_1)) = [[0A]] + [[0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X incr(X) -> n__incr(X) adx(X) -> n__adx(X) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) zeros -> cons(n__0, n__zeros) zeros -> n__zeros 0 -> n__0 s(X) -> n__s(X) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(X)) -> INCR(activate(X)) ACTIVATE(n__incr(X)) -> ACTIVATE(X) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) INCR(cons(X, Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__incr(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ADX_1(x_1) ) = 2 POL( INCR_1(x_1) ) = x_1 + 2 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__s_1(x_1) ) = max{0, -2} POL( s_1(x_1) ) = 0 POL( n__incr_1(x_1) ) = x_1 + 2 POL( incr_1(x_1) ) = x_1 + 2 POL( n__adx_1(x_1) ) = 2 POL( adx_1(x_1) ) = 2 POL( cons_2(x_1, x_2) ) = max{0, x_2 - 2} POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X incr(X) -> n__incr(X) adx(X) -> n__adx(X) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) zeros -> cons(n__0, n__zeros) zeros -> n__zeros 0 -> n__0 s(X) -> n__s(X) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(X)) -> INCR(activate(X)) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) INCR(cons(X, Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__incr(X)) -> INCR(activate(X)) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__incr(n__0)) -> INCR(0),ACTIVATE(n__incr(n__0)) -> INCR(0)) (ACTIVATE(n__incr(n__zeros)) -> INCR(zeros),ACTIVATE(n__incr(n__zeros)) -> INCR(zeros)) (ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)),ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0))) (ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))),ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0)))) (ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))),ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0)))) (ACTIVATE(n__incr(x0)) -> INCR(x0),ACTIVATE(n__incr(x0)) -> INCR(x0)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__0)) -> INCR(0) ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__adx(X)) -> ADX(activate(X)) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__adx(n__0)) -> ADX(0),ACTIVATE(n__adx(n__0)) -> ADX(0)) (ACTIVATE(n__adx(n__zeros)) -> ADX(zeros),ACTIVATE(n__adx(n__zeros)) -> ADX(zeros)) (ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)),ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0))) (ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))),ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0)))) (ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))),ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0)))) (ACTIVATE(n__adx(x0)) -> ADX(x0),ACTIVATE(n__adx(x0)) -> ADX(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__0)) -> INCR(0) ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__0)) -> ADX(0) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__incr(n__0)) -> INCR(0) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__incr(n__0)) -> INCR(n__0),ACTIVATE(n__incr(n__0)) -> INCR(n__0)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__0)) -> ADX(0) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__0)) -> INCR(n__0) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__0)) -> ADX(0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)),ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros))) (ACTIVATE(n__incr(n__zeros)) -> INCR(n__zeros),ACTIVATE(n__incr(n__zeros)) -> INCR(n__zeros)) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__0)) -> ADX(0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) ACTIVATE(n__incr(n__zeros)) -> INCR(n__zeros) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__0)) -> ADX(0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__incr(n__s(x0))) -> INCR(s(x0)) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__incr(n__s(x0))) -> INCR(n__s(x0)),ACTIVATE(n__incr(n__s(x0))) -> INCR(n__s(x0))) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__0)) -> ADX(0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) ACTIVATE(n__incr(n__s(x0))) -> INCR(n__s(x0)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__0)) -> ADX(0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__adx(n__0)) -> ADX(0) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__adx(n__0)) -> ADX(n__0),ACTIVATE(n__adx(n__0)) -> ADX(n__0)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) ACTIVATE(n__adx(n__0)) -> ADX(n__0) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)),ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros))) (ACTIVATE(n__adx(n__zeros)) -> ADX(n__zeros),ACTIVATE(n__adx(n__zeros)) -> ADX(n__zeros)) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(n__zeros) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__adx(n__s(x0))) -> ADX(s(x0)) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__adx(n__s(x0))) -> ADX(n__s(x0)),ACTIVATE(n__adx(n__s(x0))) -> ADX(n__s(x0))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) ACTIVATE(n__adx(n__s(x0))) -> ADX(n__s(x0)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__incr(n__zeros)) -> INCR(cons(n__0, n__zeros)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ADX_1(x_1) ) = 0 POL( adx_1(x_1) ) = 0 POL( incr_1(x_1) ) = 2x_1 POL( INCR_1(x_1) ) = x_1 POL( cons_2(x_1, x_2) ) = x_2 POL( n__s_1(x_1) ) = max{0, -2} POL( n__incr_1(x_1) ) = 2x_1 POL( n__adx_1(x_1) ) = max{0, -2} POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__zeros ) = 1 POL( zeros ) = 1 POL( s_1(x_1) ) = 0 POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) incr(X) -> n__incr(X) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) adx(X) -> n__adx(X) zeros -> cons(n__0, n__zeros) zeros -> n__zeros 0 -> n__0 s(X) -> n__s(X) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(ACTIVATE(x_1)) = [1/2]x_1 POL(ADX(x_1)) = [1/4] + [1/4]x_1 POL(INCR(x_1)) = [1/4]x_1 POL(activate(x_1)) = x_1 POL(adx(x_1)) = [1/2] + x_1 POL(cons(x_1, x_2)) = [2]x_2 POL(incr(x_1)) = [1/2]x_1 POL(n__0) = 0 POL(n__adx(x_1)) = [1/2] + x_1 POL(n__incr(x_1)) = [1/2]x_1 POL(n__s(x_1)) = 0 POL(n__zeros) = 0 POL(s(x_1)) = 0 POL(zeros) = 0 The value of delta used in the strict ordering is 1/8. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) incr(X) -> n__incr(X) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) adx(X) -> n__adx(X) zeros -> cons(n__0, n__zeros) zeros -> n__zeros 0 -> n__0 s(X) -> n__s(X) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, Y)) -> ACTIVATE(Y) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, Y)) -> INCR(cons(activate(X), n__adx(activate(Y)))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = ACTIVATE(n__adx(activate(n__zeros))) evaluates to t =ACTIVATE(n__adx(activate(n__zeros))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence ACTIVATE(n__adx(activate(n__zeros))) -> ACTIVATE(n__adx(n__zeros)) with rule activate(X) -> X at position [0,0] and matcher [X / n__zeros] ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) with rule ACTIVATE(n__adx(n__zeros)) -> ADX(cons(n__0, n__zeros)) at position [] and matcher [ ] ADX(cons(n__0, n__zeros)) -> INCR(cons(activate(n__0), n__adx(activate(n__zeros)))) with rule ADX(cons(X', Y')) -> INCR(cons(activate(X'), n__adx(activate(Y')))) at position [] and matcher [X' / n__0, Y' / n__zeros] INCR(cons(activate(n__0), n__adx(activate(n__zeros)))) -> ACTIVATE(n__adx(activate(n__zeros))) with rule INCR(cons(X, Y)) -> ACTIVATE(Y) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (46) NO