/export/starexec/sandbox/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO Problem: nats() -> adx(zeros()) zeros() -> cons(n__0(),n__zeros()) incr(cons(X,Y)) -> cons(n__s(activate(X)),n__incr(activate(Y))) adx(cons(X,Y)) -> incr(cons(activate(X),n__adx(activate(Y)))) hd(cons(X,Y)) -> activate(X) tl(cons(X,Y)) -> activate(Y) 0() -> n__0() zeros() -> n__zeros() s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0()) -> 0() activate(n__zeros()) -> zeros() activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Proof: Matrix Interpretation Processor: dim=1 interpretation: [s](x0) = x0, [0] = 0, [tl](x0) = x0 + 7, [hd](x0) = 6x0, [n__adx](x0) = x0, [n__incr](x0) = x0, [n__s](x0) = x0, [activate](x0) = x0, [incr](x0) = x0, [cons](x0, x1) = 4x0 + x1, [n__zeros] = 0, [n__0] = 0, [adx](x0) = x0, [zeros] = 0, [nats] = 0 orientation: nats() = 0 >= 0 = adx(zeros()) zeros() = 0 >= 0 = cons(n__0(),n__zeros()) incr(cons(X,Y)) = 4X + Y >= 4X + Y = cons(n__s(activate(X)),n__incr(activate(Y))) adx(cons(X,Y)) = 4X + Y >= 4X + Y = incr(cons(activate(X),n__adx(activate(Y)))) hd(cons(X,Y)) = 24X + 6Y >= X = activate(X) tl(cons(X,Y)) = 4X + Y + 7 >= Y = activate(Y) 0() = 0 >= 0 = n__0() zeros() = 0 >= 0 = n__zeros() s(X) = X >= X = n__s(X) incr(X) = X >= X = n__incr(X) adx(X) = X >= X = n__adx(X) activate(n__0()) = 0 >= 0 = 0() activate(n__zeros()) = 0 >= 0 = zeros() activate(n__s(X)) = X >= X = s(X) activate(n__incr(X)) = X >= X = incr(activate(X)) activate(n__adx(X)) = X >= X = adx(activate(X)) activate(X) = X >= X = X problem: nats() -> adx(zeros()) zeros() -> cons(n__0(),n__zeros()) incr(cons(X,Y)) -> cons(n__s(activate(X)),n__incr(activate(Y))) adx(cons(X,Y)) -> incr(cons(activate(X),n__adx(activate(Y)))) hd(cons(X,Y)) -> activate(X) 0() -> n__0() zeros() -> n__zeros() s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0()) -> 0() activate(n__zeros()) -> zeros() activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [s](x0) = x0, [0] = 0, [hd](x0) = x0, [n__adx](x0) = x0, [n__incr](x0) = x0, [n__s](x0) = x0, [activate](x0) = x0, [incr](x0) = x0, [cons](x0, x1) = 2x0 + 2x1, [n__zeros] = 0, [n__0] = 0, [adx](x0) = x0, [zeros] = 0, [nats] = 4 orientation: nats() = 4 >= 0 = adx(zeros()) zeros() = 0 >= 0 = cons(n__0(),n__zeros()) incr(cons(X,Y)) = 2X + 2Y >= 2X + 2Y = cons(n__s(activate(X)),n__incr(activate(Y))) adx(cons(X,Y)) = 2X + 2Y >= 2X + 2Y = incr(cons(activate(X),n__adx(activate(Y)))) hd(cons(X,Y)) = 2X + 2Y >= X = activate(X) 0() = 0 >= 0 = n__0() zeros() = 0 >= 0 = n__zeros() s(X) = X >= X = n__s(X) incr(X) = X >= X = n__incr(X) adx(X) = X >= X = n__adx(X) activate(n__0()) = 0 >= 0 = 0() activate(n__zeros()) = 0 >= 0 = zeros() activate(n__s(X)) = X >= X = s(X) activate(n__incr(X)) = X >= X = incr(activate(X)) activate(n__adx(X)) = X >= X = adx(activate(X)) activate(X) = X >= X = X problem: zeros() -> cons(n__0(),n__zeros()) incr(cons(X,Y)) -> cons(n__s(activate(X)),n__incr(activate(Y))) adx(cons(X,Y)) -> incr(cons(activate(X),n__adx(activate(Y)))) hd(cons(X,Y)) -> activate(X) 0() -> n__0() zeros() -> n__zeros() s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0()) -> 0() activate(n__zeros()) -> zeros() activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [s](x0) = x0, [0] = 0, [hd](x0) = x0 + 2, [n__adx](x0) = x0, [n__incr](x0) = x0, [n__s](x0) = x0, [activate](x0) = x0, [incr](x0) = x0, [cons](x0, x1) = x0 + x1, [n__zeros] = 1, [n__0] = 0, [adx](x0) = x0, [zeros] = 1 orientation: zeros() = 1 >= 1 = cons(n__0(),n__zeros()) incr(cons(X,Y)) = X + Y >= X + Y = cons(n__s(activate(X)),n__incr(activate(Y))) adx(cons(X,Y)) = X + Y >= X + Y = incr(cons(activate(X),n__adx(activate(Y)))) hd(cons(X,Y)) = X + Y + 2 >= X = activate(X) 0() = 0 >= 0 = n__0() zeros() = 1 >= 1 = n__zeros() s(X) = X >= X = n__s(X) incr(X) = X >= X = n__incr(X) adx(X) = X >= X = n__adx(X) activate(n__0()) = 0 >= 0 = 0() activate(n__zeros()) = 1 >= 1 = zeros() activate(n__s(X)) = X >= X = s(X) activate(n__incr(X)) = X >= X = incr(activate(X)) activate(n__adx(X)) = X >= X = adx(activate(X)) activate(X) = X >= X = X problem: zeros() -> cons(n__0(),n__zeros()) incr(cons(X,Y)) -> cons(n__s(activate(X)),n__incr(activate(Y))) adx(cons(X,Y)) -> incr(cons(activate(X),n__adx(activate(Y)))) 0() -> n__0() zeros() -> n__zeros() s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0()) -> 0() activate(n__zeros()) -> zeros() activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(X) -> X Unfolding Processor: loop length: 6 terms: incr(cons(X,n__adx(n__zeros()))) cons(n__s(activate(X)),n__incr(activate(n__adx(n__zeros())))) cons(n__s(activate(X)),n__incr(adx(activate(n__zeros())))) cons(n__s(activate(X)),n__incr(adx(zeros()))) cons(n__s(activate(X)),n__incr(adx(cons(n__0(),n__zeros())))) cons(n__s(activate(X)),n__incr(incr(cons(activate(n__0()),n__adx(activate(n__zeros())))))) context: cons(n__s(activate(X)),n__incr([])) substitution: X -> activate(n__0()) Qed