/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSToCSRProof [EQUIVALENT, 0 ms] (2) CSR (3) CSDependencyPairsProof [EQUIVALENT, 63 ms] (4) QCSDP (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QCSDP (8) QCSDPReductionPairProof [EQUIVALENT, 107 ms] (9) QCSDP (10) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (11) AND (12) QCSDP (13) QCSDPReductionPairProof [EQUIVALENT, 296 ms] (14) QCSDP (15) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (16) TRUE (17) QCSDP (18) QCSDPReductionPairProof [EQUIVALENT, 325 ms] (19) QCSDP (20) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (21) TRUE (22) QCSDP (23) QCSDPSubtermProof [EQUIVALENT, 0 ms] (24) QCSDP (25) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (26) TRUE (27) QCSDP (28) QCSDPSubtermProof [EQUIVALENT, 2 ms] (29) QCSDP (30) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (31) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(U11(tt, V1, V2)) -> mark(U12(isNat(V1), V2)) active(U12(tt, V2)) -> mark(U13(isNat(V2))) active(U13(tt)) -> mark(tt) active(U21(tt, V1)) -> mark(U22(isNat(V1))) active(U22(tt)) -> mark(tt) active(U31(tt, V1, V2)) -> mark(U32(isNat(V1), V2)) active(U32(tt, V2)) -> mark(U33(isNat(V2))) active(U33(tt)) -> mark(tt) active(U41(tt, N)) -> mark(N) active(U51(tt, M, N)) -> mark(s(plus(N, M))) active(U61(tt)) -> mark(0) active(U71(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1), V1)) active(isNat(x(V1, V2))) -> mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNatKind(0)) -> mark(tt) active(isNatKind(plus(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(isNatKind(x(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(plus(N, 0)) -> mark(U41(and(isNat(N), isNatKind(N)), N)) active(plus(N, s(M))) -> mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(x(N, 0)) -> mark(U61(and(isNat(N), isNatKind(N)))) active(x(N, s(M))) -> mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(U11(X1, X2, X3)) -> U11(active(X1), X2, X3) active(U12(X1, X2)) -> U12(active(X1), X2) active(U13(X)) -> U13(active(X)) active(U21(X1, X2)) -> U21(active(X1), X2) active(U22(X)) -> U22(active(X)) active(U31(X1, X2, X3)) -> U31(active(X1), X2, X3) active(U32(X1, X2)) -> U32(active(X1), X2) active(U33(X)) -> U33(active(X)) active(U41(X1, X2)) -> U41(active(X1), X2) active(U51(X1, X2, X3)) -> U51(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U61(X)) -> U61(active(X)) active(U71(X1, X2, X3)) -> U71(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2, X3)) -> U11(proper(X1), proper(X2), proper(X3)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(U13(X)) -> U13(proper(X)) proper(U21(X1, X2)) -> U21(proper(X1), proper(X2)) proper(U22(X)) -> U22(proper(X)) proper(U31(X1, X2, X3)) -> U31(proper(X1), proper(X2), proper(X3)) proper(U32(X1, X2)) -> U32(proper(X1), proper(X2)) proper(U33(X)) -> U33(proper(X)) proper(U41(X1, X2)) -> U41(proper(X1), proper(X2)) proper(U51(X1, X2, X3)) -> U51(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U61(X)) -> U61(proper(X)) proper(0) -> ok(0) proper(U71(X1, X2, X3)) -> U71(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNatKind(X)) -> isNatKind(proper(X)) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. ---------------------------------------- (1) QTRSToCSRProof (EQUIVALENT) The following Q TRS is given: Q restricted rewrite system: The TRS R consists of the following rules: active(U11(tt, V1, V2)) -> mark(U12(isNat(V1), V2)) active(U12(tt, V2)) -> mark(U13(isNat(V2))) active(U13(tt)) -> mark(tt) active(U21(tt, V1)) -> mark(U22(isNat(V1))) active(U22(tt)) -> mark(tt) active(U31(tt, V1, V2)) -> mark(U32(isNat(V1), V2)) active(U32(tt, V2)) -> mark(U33(isNat(V2))) active(U33(tt)) -> mark(tt) active(U41(tt, N)) -> mark(N) active(U51(tt, M, N)) -> mark(s(plus(N, M))) active(U61(tt)) -> mark(0) active(U71(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1), V1)) active(isNat(x(V1, V2))) -> mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNatKind(0)) -> mark(tt) active(isNatKind(plus(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(isNatKind(x(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(plus(N, 0)) -> mark(U41(and(isNat(N), isNatKind(N)), N)) active(plus(N, s(M))) -> mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(x(N, 0)) -> mark(U61(and(isNat(N), isNatKind(N)))) active(x(N, s(M))) -> mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(U11(X1, X2, X3)) -> U11(active(X1), X2, X3) active(U12(X1, X2)) -> U12(active(X1), X2) active(U13(X)) -> U13(active(X)) active(U21(X1, X2)) -> U21(active(X1), X2) active(U22(X)) -> U22(active(X)) active(U31(X1, X2, X3)) -> U31(active(X1), X2, X3) active(U32(X1, X2)) -> U32(active(X1), X2) active(U33(X)) -> U33(active(X)) active(U41(X1, X2)) -> U41(active(X1), X2) active(U51(X1, X2, X3)) -> U51(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U61(X)) -> U61(active(X)) active(U71(X1, X2, X3)) -> U71(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2, X3)) -> U11(proper(X1), proper(X2), proper(X3)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(U13(X)) -> U13(proper(X)) proper(U21(X1, X2)) -> U21(proper(X1), proper(X2)) proper(U22(X)) -> U22(proper(X)) proper(U31(X1, X2, X3)) -> U31(proper(X1), proper(X2), proper(X3)) proper(U32(X1, X2)) -> U32(proper(X1), proper(X2)) proper(U33(X)) -> U33(proper(X)) proper(U41(X1, X2)) -> U41(proper(X1), proper(X2)) proper(U51(X1, X2, X3)) -> U51(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U61(X)) -> U61(proper(X)) proper(0) -> ok(0) proper(U71(X1, X2, X3)) -> U71(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNatKind(X)) -> isNatKind(proper(X)) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. Special symbols used for the transformation (see [GM04]): top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 The replacement map contains the following entries: U11: {1} tt: empty set U12: {1} isNat: empty set U13: {1} U21: {1} U22: {1} U31: {1} U32: {1} U33: {1} U41: {1} U51: {1} s: {1} plus: {1, 2} U61: {1} 0: empty set U71: {1} x: {1, 2} and: {1} isNatKind: empty set The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound). ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The replacement map contains the following entries: U11: {1} tt: empty set U12: {1} isNat: empty set U13: {1} U21: {1} U22: {1} U31: {1} U32: {1} U33: {1} U41: {1} U51: {1} s: {1} plus: {1, 2} U61: {1} 0: empty set U71: {1} x: {1, 2} and: {1} isNatKind: empty set ---------------------------------------- (3) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (4) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, U13'_1, U22'_1, U33'_1, PLUS_2, X_2, U61'_1} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U11'_3, U21'_2, U32'_2, U31'_3, U51'_3, U71'_3, AND_2, U41'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1, ISNATKIND_1, U_1} are not replacing on any position. The ordinary context-sensitive dependency pairs DP_o are: U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U11'(tt, V1, V2) -> ISNAT(V1) U12'(tt, V2) -> U13'(isNat(V2)) U12'(tt, V2) -> ISNAT(V2) U21'(tt, V1) -> U22'(isNat(V1)) U21'(tt, V1) -> ISNAT(V1) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U31'(tt, V1, V2) -> ISNAT(V1) U32'(tt, V2) -> U33'(isNat(V2)) U32'(tt, V2) -> ISNAT(V2) U51'(tt, M, N) -> PLUS(N, M) U71'(tt, M, N) -> PLUS(x(N, M), N) U71'(tt, M, N) -> X(N, M) ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) ISNAT(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(plus(V1, V2)) -> ISNATKIND(V1) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) ISNAT(s(V1)) -> ISNATKIND(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) ISNAT(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(x(V1, V2)) -> ISNATKIND(V1) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) PLUS(N, 0) -> U41'(and(isNat(N), isNatKind(N)), N) PLUS(N, 0) -> AND(isNat(N), isNatKind(N)) PLUS(N, 0) -> ISNAT(N) PLUS(N, s(M)) -> U51'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) PLUS(N, s(M)) -> AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))) PLUS(N, s(M)) -> AND(isNat(M), isNatKind(M)) PLUS(N, s(M)) -> ISNAT(M) X(N, 0) -> U61'(and(isNat(N), isNatKind(N))) X(N, 0) -> AND(isNat(N), isNatKind(N)) X(N, 0) -> ISNAT(N) X(N, s(M)) -> U71'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) X(N, s(M)) -> AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))) X(N, s(M)) -> AND(isNat(M), isNatKind(M)) X(N, s(M)) -> ISNAT(M) The collapsing dependency pairs are DP_c: U41'(tt, N) -> N U51'(tt, M, N) -> N U51'(tt, M, N) -> M U71'(tt, M, N) -> N U71'(tt, M, N) -> M AND(tt, X) -> X The hidden terms of R are: isNatKind(x0) and(isNat(x0), isNatKind(x0)) isNat(x0) Every hiding context is built from: aprove.DPFramework.CSDPProblem.QCSDPProblem$1@7e84924d Hence, the new unhiding pairs DP_u are : U41'(tt, N) -> U(N) U51'(tt, M, N) -> U(N) U51'(tt, M, N) -> U(M) U71'(tt, M, N) -> U(N) U71'(tt, M, N) -> U(M) AND(tt, X) -> U(X) U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) U(and(isNat(x0), isNatKind(x0))) -> AND(isNat(x0), isNatKind(x0)) U(isNat(x0)) -> ISNAT(x0) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (5) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 21 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U11'_3, AND_2, U21'_2, U31'_3, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1, U_1, ISNATKIND_1} are not replacing on any position. The TRS P consists of the following rules: U12'(tt, V2) -> ISNAT(V2) ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U11'(tt, V1, V2) -> ISNAT(V1) ISNAT(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) AND(tt, X) -> U(X) U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) U(and(isNat(x0), isNatKind(x0))) -> AND(isNat(x0), isNatKind(x0)) U(isNat(x0)) -> ISNAT(x0) ISNAT(plus(V1, V2)) -> ISNATKIND(V1) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) U21'(tt, V1) -> ISNAT(V1) ISNAT(s(V1)) -> ISNATKIND(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U32'(tt, V2) -> ISNAT(V2) ISNAT(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(x(V1, V2)) -> ISNATKIND(V1) U31'(tt, V1, V2) -> ISNAT(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (8) QCSDPReductionPairProof (EQUIVALENT) Using the order Polynomial interpretation with max and min functions [POLO,MAXPOLO]: POL(0) = 0 POL(AND(x_1, x_2)) = x_2 POL(ISNAT(x_1)) = 0 POL(ISNATKIND(x_1)) = 0 POL(U(x_1)) = x_1 POL(U11(x_1, x_2, x_3)) = 0 POL(U11'(x_1, x_2, x_3)) = 0 POL(U12(x_1, x_2)) = 0 POL(U12'(x_1, x_2)) = 0 POL(U13(x_1)) = 0 POL(U21(x_1, x_2)) = 1 + x_1 POL(U21'(x_1, x_2)) = 0 POL(U22(x_1)) = x_1 POL(U31(x_1, x_2, x_3)) = 0 POL(U31'(x_1, x_2, x_3)) = 0 POL(U32(x_1, x_2)) = 0 POL(U32'(x_1, x_2)) = 0 POL(U33(x_1)) = 0 POL(U41(x_1, x_2)) = x_2 POL(U51(x_1, x_2, x_3)) = 0 POL(U61(x_1)) = 0 POL(U71(x_1, x_2, x_3)) = 0 POL(and(x_1, x_2)) = x_1 + x_2 POL(isNat(x_1)) = 1 POL(isNatKind(x_1)) = 0 POL(plus(x_1, x_2)) = x_1 POL(s(x_1)) = 0 POL(tt) = 0 POL(x(x_1, x_2)) = 0 the following usable rules plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U41(tt, N) -> N and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U51(tt, M, N) -> s(plus(N, M)) could all be oriented weakly. Furthermore, the pairs U(and(isNat(x0), isNatKind(x0))) -> AND(isNat(x0), isNatKind(x0)) U(isNat(x0)) -> ISNAT(x0) could be oriented strictly and thus removed by the CS-Reduction Pair Processor [LPAR08,DA_EMMES]. ---------------------------------------- (9) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U11'_3, AND_2, U21'_2, U31'_3, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1, U_1, ISNATKIND_1} are not replacing on any position. The TRS P consists of the following rules: U12'(tt, V2) -> ISNAT(V2) ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U11'(tt, V1, V2) -> ISNAT(V1) ISNAT(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) AND(tt, X) -> U(X) U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) ISNAT(plus(V1, V2)) -> ISNATKIND(V1) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) U21'(tt, V1) -> ISNAT(V1) ISNAT(s(V1)) -> ISNATKIND(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U32'(tt, V2) -> ISNAT(V2) ISNAT(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(x(V1, V2)) -> ISNATKIND(V1) U31'(tt, V1, V2) -> ISNAT(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (10) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 2 SCCs with 5 less nodes. ---------------------------------------- (11) Complex Obligation (AND) ---------------------------------------- (12) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, AND_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, U_1, ISNATKIND_1} are not replacing on any position. The TRS P consists of the following rules: U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) AND(tt, X) -> U(X) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (13) QCSDPReductionPairProof (EQUIVALENT) Using the order U/1(YES) and/2(YES,YES) isNatKind/1)YES( ISNATKIND/1(YES) plus/2(YES,YES) AND/2(NO,YES) tt/0) s/1(YES) x/2(YES,YES) 0/0) U41/2)NO,YES( isNat/1)YES( U51/3(YES,YES,YES) U11/3(NO,NO,NO) U21/2(NO,YES) U31/3(NO,NO,YES) U12/2(NO,NO) U13/1(NO) U22/1)YES( U61/1(YES) U71/3(YES,YES,YES) U32/2)NO,YES( U33/1)YES( Quasi precedence: [U_1, ISNATKIND_1, AND_1, x_2, U71_3] > [plus_2, U51_3, U11] > [and_2, tt, s_1, U21_1, U12, U13] [U_1, ISNATKIND_1, AND_1, x_2, U71_3] > [0, U61_1] > [and_2, tt, s_1, U21_1, U12, U13] [U_1, ISNATKIND_1, AND_1, x_2, U71_3] > U31_1 Status: U_1: multiset status and_2: [1,2] ISNATKIND_1: multiset status plus_2: [1,2] AND_1: multiset status tt: multiset status s_1: [1] x_2: [2,1] 0: multiset status U51_3: [3,2,1] U11: [] U21_1: [1] U31_1: multiset status U12: [] U13: [] U61_1: multiset status U71_3: [2,3,1] the following usable rules and(tt, X) -> X isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U41(tt, N) -> N isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U51(tt, M, N) -> s(plus(N, M)) could all be oriented weakly. Furthermore, the pairs U(and(x_0, x_1)) -> U(x_0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) could be oriented strictly and thus removed by the CS-Reduction Pair Processor [LPAR08,DA_EMMES]. ---------------------------------------- (14) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, AND_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNATKIND_1, U_1} are not replacing on any position. The TRS P consists of the following rules: U(isNatKind(x0)) -> ISNATKIND(x0) AND(tt, X) -> U(X) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (15) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 2 less nodes. ---------------------------------------- (16) TRUE ---------------------------------------- (17) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U11'_3, U12'_2, U21'_2, U31'_3, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1} are not replacing on any position. The TRS P consists of the following rules: ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U12'(tt, V2) -> ISNAT(V2) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) U21'(tt, V1) -> ISNAT(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U32'(tt, V2) -> ISNAT(V2) U31'(tt, V1, V2) -> ISNAT(V1) U11'(tt, V1, V2) -> ISNAT(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (18) QCSDPReductionPairProof (EQUIVALENT) Using the order ISNAT/1(YES) plus/2(YES,YES) U11'/3(NO,YES,YES) and/2)NO,YES( isNatKind/1(YES) tt/0) U12'/2(NO,YES) isNat/1(NO) s/1(YES) U21'/2(NO,YES) x/2(YES,YES) U31'/3(YES,YES,YES) U32'/2(NO,YES) 0/0) U41/2(YES,YES) U51/3(YES,YES,YES) U11/3(NO,NO,NO) U21/2(NO,NO) U31/3(NO,NO,NO) U12/2(NO,NO) U13/1(NO) U61/1(NO) U71/3(YES,YES,YES) U22/1)YES( U32/2(NO,NO) U33/1(NO) Quasi precedence: [ISNAT_1, U11'_2, U12'_1, U21'_1, x_2, U31'_3, U32'_1, U71_3] > [plus_2, isNatKind_1, isNat, U51_3, U21] > s_1 > U41_2 [ISNAT_1, U11'_2, U12'_1, U21'_1, x_2, U31'_3, U32'_1, U71_3] > [plus_2, isNatKind_1, isNat, U51_3, U21] > U11 > U12 > U13 > [tt, 0, U61] > U41_2 [ISNAT_1, U11'_2, U12'_1, U21'_1, x_2, U31'_3, U32'_1, U71_3] > [plus_2, isNatKind_1, isNat, U51_3, U21] > U31 > U32 > U33 > [tt, 0, U61] > U41_2 Status: ISNAT_1: multiset status plus_2: [1,2] U11'_2: multiset status isNatKind_1: [1] tt: multiset status U12'_1: multiset status isNat: multiset status s_1: [1] U21'_1: multiset status x_2: [2,1] U31'_3: multiset status U32'_1: multiset status 0: multiset status U41_2: [1,2] U51_3: [3,2,1] U11: multiset status U21: multiset status U31: [] U12: [] U13: multiset status U61: multiset status U71_3: [2,3,1] U32: multiset status U33: multiset status the following usable rules plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U41(tt, N) -> N and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U51(tt, M, N) -> s(plus(N, M)) could all be oriented weakly. Furthermore, the pairs ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U31'(tt, V1, V2) -> ISNAT(V1) U11'(tt, V1, V2) -> ISNAT(V1) could be oriented strictly and thus removed by the CS-Reduction Pair Processor [LPAR08,DA_EMMES]. ---------------------------------------- (19) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U21'_2, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1} are not replacing on any position. The TRS P consists of the following rules: U12'(tt, V2) -> ISNAT(V2) U21'(tt, V1) -> ISNAT(V1) U32'(tt, V2) -> ISNAT(V2) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (20) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 3 less nodes. ---------------------------------------- (21) TRUE ---------------------------------------- (22) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, PLUS_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U51'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: PLUS(N, s(M)) -> U51'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U51'(tt, M, N) -> PLUS(N, M) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (23) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. PLUS(N, s(M)) -> U51'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The remaining pairs can at least be oriented weakly. U51'(tt, M, N) -> PLUS(N, M) Used ordering: Combined order from the following AFS and order. U51'(x1, x2, x3) = x2 PLUS(x1, x2) = x2 Subterm Order ---------------------------------------- (24) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, PLUS_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U51'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: U51'(tt, M, N) -> PLUS(N, M) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (25) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 1 less node. ---------------------------------------- (26) TRUE ---------------------------------------- (27) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, X_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U71'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: U71'(tt, M, N) -> X(N, M) X(N, s(M)) -> U71'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (28) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. X(N, s(M)) -> U71'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The remaining pairs can at least be oriented weakly. U71'(tt, M, N) -> X(N, M) Used ordering: Combined order from the following AFS and order. X(x1, x2) = x2 U71'(x1, x2, x3) = x2 Subterm Order ---------------------------------------- (29) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, X_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U71'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: U71'(tt, M, N) -> X(N, M) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (30) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 1 less node. ---------------------------------------- (31) TRUE