/export/starexec/sandbox/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem: f(x1) -> n(c(n(a(x1)))) c(f(x1)) -> f(n(a(c(x1)))) n(a(x1)) -> c(x1) c(c(x1)) -> c(x1) n(s(x1)) -> f(s(s(x1))) n(f(x1)) -> f(n(x1)) Proof: String Reversal Processor: f(x1) -> a(n(c(n(x1)))) f(c(x1)) -> c(a(n(f(x1)))) a(n(x1)) -> c(x1) c(c(x1)) -> c(x1) s(n(x1)) -> s(s(f(x1))) f(n(x1)) -> n(f(x1)) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [s](x0) = [0 0 0]x0 [1 1 0] , [1 0 0] [c](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [0] [n](x0) = [0 1 0]x0 + [1] [0 0 0] [0], [1 0 0] [0] [a](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [1 0 0] [0] [f](x0) = [0 1 0]x0 + [0] [0 0 0] [1] orientation: [1 0 0] [0] [1 0 0] [0] f(x1) = [0 1 0]x1 + [0] >= [0 0 0]x1 + [0] = a(n(c(n(x1)))) [0 0 0] [1] [0 0 0] [1] [1 0 0] [0] [1 0 0] f(c(x1)) = [0 0 0]x1 + [0] >= [0 0 0]x1 = c(a(n(f(x1)))) [0 0 0] [1] [0 0 0] [1 0 0] [0] [1 0 0] a(n(x1)) = [0 0 0]x1 + [0] >= [0 0 0]x1 = c(x1) [0 0 0] [1] [0 0 0] [1 0 0] [1 0 0] c(c(x1)) = [0 0 0]x1 >= [0 0 0]x1 = c(x1) [0 0 0] [0 0 0] [1 1 0] [1] [1 1 0] s(n(x1)) = [0 0 0]x1 + [0] >= [0 0 0]x1 = s(s(f(x1))) [1 1 0] [1] [1 1 0] [1 0 0] [0] [1 0 0] [0] f(n(x1)) = [0 1 0]x1 + [1] >= [0 1 0]x1 + [1] = n(f(x1)) [0 0 0] [1] [0 0 0] [0] problem: f(x1) -> a(n(c(n(x1)))) f(c(x1)) -> c(a(n(f(x1)))) a(n(x1)) -> c(x1) c(c(x1)) -> c(x1) f(n(x1)) -> n(f(x1)) String Reversal Processor: f(x1) -> n(c(n(a(x1)))) c(f(x1)) -> f(n(a(c(x1)))) n(a(x1)) -> c(x1) c(c(x1)) -> c(x1) n(f(x1)) -> f(n(x1)) Matrix Interpretation Processor: dim=1 interpretation: [c](x0) = x0, [n](x0) = x0, [a](x0) = x0, [f](x0) = 4x0 + 1 orientation: f(x1) = 4x1 + 1 >= x1 = n(c(n(a(x1)))) c(f(x1)) = 4x1 + 1 >= 4x1 + 1 = f(n(a(c(x1)))) n(a(x1)) = x1 >= x1 = c(x1) c(c(x1)) = x1 >= x1 = c(x1) n(f(x1)) = 4x1 + 1 >= 4x1 + 1 = f(n(x1)) problem: c(f(x1)) -> f(n(a(c(x1)))) n(a(x1)) -> c(x1) c(c(x1)) -> c(x1) n(f(x1)) -> f(n(x1)) Matrix Interpretation Processor: dim=2 interpretation: [1 0] [c](x0) = [2 0]x0, [1 2] [0] [n](x0) = [2 0]x0 + [1], [1 0] [a](x0) = [0 0]x0, [2 0] [2] [f](x0) = [0 2]x0 + [1] orientation: [2 0] [2] [2 0] [2] c(f(x1)) = [4 0]x1 + [4] >= [4 0]x1 + [3] = f(n(a(c(x1)))) [1 0] [0] [1 0] n(a(x1)) = [2 0]x1 + [1] >= [2 0]x1 = c(x1) [1 0] [1 0] c(c(x1)) = [2 0]x1 >= [2 0]x1 = c(x1) [2 4] [4] [2 4] [2] n(f(x1)) = [4 0]x1 + [5] >= [4 0]x1 + [3] = f(n(x1)) problem: c(f(x1)) -> f(n(a(c(x1)))) n(a(x1)) -> c(x1) c(c(x1)) -> c(x1) String Reversal Processor: f(c(x1)) -> c(a(n(f(x1)))) a(n(x1)) -> c(x1) c(c(x1)) -> c(x1) Matrix Interpretation Processor: dim=1 interpretation: [c](x0) = x0 + 1, [n](x0) = x0 + 8, [a](x0) = x0, [f](x0) = 9x0 + 8 orientation: f(c(x1)) = 9x1 + 17 >= 9x1 + 17 = c(a(n(f(x1)))) a(n(x1)) = x1 + 8 >= x1 + 1 = c(x1) c(c(x1)) = x1 + 2 >= x1 + 1 = c(x1) problem: f(c(x1)) -> c(a(n(f(x1)))) Bounds Processor: bound: 0 enrichment: match automaton: final states: {1} transitions: f0(2) -> 3* f50() -> 2* c0(5) -> 1* a0(4) -> 5* n0(3) -> 4* 1 -> 3* problem: Qed