/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 1 0 | \ / 1 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / Remains to prove termination of the 31-rule system { 0 3 2 -> 0 2 1 3 , 0 3 2 -> 0 2 1 1 3 , 0 3 2 -> 0 0 2 1 1 3 , 0 1 1 2 -> 0 2 1 1 3 , 0 1 3 2 -> 0 2 1 4 3 , 0 1 3 2 -> 3 3 0 2 1 , 0 1 3 2 -> 3 0 2 4 1 1 , 0 3 2 2 -> 0 0 2 3 2 , 0 3 2 2 -> 0 0 4 2 3 2 , 2 0 3 2 -> 1 3 0 2 2 , 3 0 3 2 -> 3 0 0 0 2 3 , 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 4 5 2 2 -> 2 5 0 2 4 1 , 5 0 2 2 -> 2 0 2 4 1 5 , 5 0 3 2 -> 3 0 2 1 4 5 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 0 5 0 3 2 -> 0 5 0 0 2 3 , 0 5 5 2 2 -> 0 2 1 5 5 2 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 3 0 3 4 2 -> 1 3 4 0 2 3 , 4 5 1 4 2 -> 2 4 4 4 1 5 , 5 0 1 3 2 -> 3 5 0 2 1 3 , 5 0 3 1 2 -> 0 2 1 4 3 5 , 5 0 4 2 2 -> 2 0 2 4 1 5 , 5 1 0 3 2 -> 0 4 3 5 1 2 , 5 1 0 3 2 -> 5 3 1 1 0 2 , 5 1 0 5 2 -> 3 5 5 0 2 1 , 5 1 0 5 2 -> 5 0 2 1 5 5 , 5 2 0 3 2 -> 0 2 5 2 3 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 1 0 0 | | 0 1 0 0 | \ / Remains to prove termination of the 15-rule system { 0 1 1 2 -> 0 2 1 1 3 , 0 1 3 2 -> 0 2 1 4 3 , 0 1 3 2 -> 3 3 0 2 1 , 0 1 3 2 -> 3 0 2 4 1 1 , 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 4 5 2 2 -> 2 5 0 2 4 1 , 5 0 2 2 -> 2 0 2 4 1 5 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 4 5 1 4 2 -> 2 4 4 4 1 5 , 5 0 1 3 2 -> 3 5 0 2 1 3 , 5 0 3 1 2 -> 0 2 1 4 3 5 , 5 0 4 2 2 -> 2 0 2 4 1 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / Remains to prove termination of the 14-rule system { 0 1 3 2 -> 0 2 1 4 3 , 0 1 3 2 -> 3 3 0 2 1 , 0 1 3 2 -> 3 0 2 4 1 1 , 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 4 5 2 2 -> 2 5 0 2 4 1 , 5 0 2 2 -> 2 0 2 4 1 5 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 4 5 1 4 2 -> 2 4 4 4 1 5 , 5 0 1 3 2 -> 3 5 0 2 1 3 , 5 0 3 1 2 -> 0 2 1 4 3 5 , 5 0 4 2 2 -> 2 0 2 4 1 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 1 0 0 0 0 | | 0 1 0 0 0 | \ / Remains to prove termination of the 10-rule system { 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 4 5 2 2 -> 2 5 0 2 4 1 , 5 0 2 2 -> 2 0 2 4 1 5 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 4 5 1 4 2 -> 2 4 4 4 1 5 , 5 0 3 1 2 -> 0 2 1 4 3 5 , 5 0 4 2 2 -> 2 0 2 4 1 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 1 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / Remains to prove termination of the 9-rule system { 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 5 0 2 2 -> 2 0 2 4 1 5 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 4 5 1 4 2 -> 2 4 4 4 1 5 , 5 0 3 1 2 -> 0 2 1 4 3 5 , 5 0 4 2 2 -> 2 0 2 4 1 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 1 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / Remains to prove termination of the 8-rule system { 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 5 0 2 2 -> 2 0 2 4 1 5 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 5 0 3 1 2 -> 0 2 1 4 3 5 , 5 0 4 2 2 -> 2 0 2 4 1 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / Remains to prove termination of the 7-rule system { 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 5 0 2 2 -> 2 0 2 4 1 5 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 5 0 3 1 2 -> 0 2 1 4 3 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / Remains to prove termination of the 6-rule system { 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 , 5 0 3 1 2 -> 0 2 1 4 3 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / Remains to prove termination of the 5-rule system { 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 5 1 2 2 -> 0 2 1 5 2 1 , 5 1 2 2 -> 2 1 5 2 1 1 , 3 0 3 1 2 -> 1 3 3 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / Remains to prove termination of the 3-rule system { 3 1 5 2 -> 0 2 1 5 3 , 3 3 5 2 -> 3 0 2 1 5 3 , 3 0 3 1 2 -> 1 3 3 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / Remains to prove termination of the 2-rule system { 3 3 5 2 -> 3 0 2 1 5 3 , 3 0 3 1 2 -> 1 3 3 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 1 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / Remains to prove termination of the 1-rule system { 3 0 3 1 2 -> 1 3 3 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / Remains to prove termination of the 0-rule system { } The system is trivially terminating.