/export/starexec/sandbox/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) Proof: DP Processor: DPs: a#(a(x1)) -> b#(x1) b#(c(x1)) -> a#(x1) c#(b(x1)) -> c#(x1) c#(b(x1)) -> c#(c(x1)) c#(b(x1)) -> b#(c(c(x1))) c#(b(x1)) -> a#(b(c(c(x1)))) TRS: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) TDG Processor: DPs: a#(a(x1)) -> b#(x1) b#(c(x1)) -> a#(x1) c#(b(x1)) -> c#(x1) c#(b(x1)) -> c#(c(x1)) c#(b(x1)) -> b#(c(c(x1))) c#(b(x1)) -> a#(b(c(c(x1)))) TRS: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) graph: c#(b(x1)) -> c#(c(x1)) -> c#(b(x1)) -> a#(b(c(c(x1)))) c#(b(x1)) -> c#(c(x1)) -> c#(b(x1)) -> b#(c(c(x1))) c#(b(x1)) -> c#(c(x1)) -> c#(b(x1)) -> c#(c(x1)) c#(b(x1)) -> c#(c(x1)) -> c#(b(x1)) -> c#(x1) c#(b(x1)) -> c#(x1) -> c#(b(x1)) -> a#(b(c(c(x1)))) c#(b(x1)) -> c#(x1) -> c#(b(x1)) -> b#(c(c(x1))) c#(b(x1)) -> c#(x1) -> c#(b(x1)) -> c#(c(x1)) c#(b(x1)) -> c#(x1) -> c#(b(x1)) -> c#(x1) c#(b(x1)) -> b#(c(c(x1))) -> b#(c(x1)) -> a#(x1) c#(b(x1)) -> a#(b(c(c(x1)))) -> a#(a(x1)) -> b#(x1) b#(c(x1)) -> a#(x1) -> a#(a(x1)) -> b#(x1) a#(a(x1)) -> b#(x1) -> b#(c(x1)) -> a#(x1) SCC Processor: #sccs: 2 #rules: 4 #arcs: 12/36 DPs: c#(b(x1)) -> c#(c(x1)) c#(b(x1)) -> c#(x1) TRS: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) Arctic Interpretation Processor: dimension: 2 usable rules: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) interpretation: [c#](x0) = [0 0]x0, [0 -&] [-&] [c](x0) = [0 0 ]x0 + [0 ], [1 1 ] [1 ] [b](x0) = [-& 0 ]x0 + [-&], [0 1] [-&] [a](x0) = [0 0]x0 + [0 ] orientation: c#(b(x1)) = [1 1]x1 + [1] >= [0 0]x1 + [0] = c#(c(x1)) c#(b(x1)) = [1 1]x1 + [1] >= [0 0]x1 = c#(x1) [1 1] [1] [1 1 ] [1 ] a(a(x1)) = [0 1]x1 + [0] >= [-& 0 ]x1 + [-&] = b(x1) [1 1] [1] [0 1] [-&] b(c(x1)) = [0 0]x1 + [0] >= [0 0]x1 + [0 ] = a(x1) [1 1] [1] [1 1] [1] c(b(x1)) = [1 1]x1 + [1] >= [1 1]x1 + [1] = a(b(c(c(x1)))) problem: DPs: TRS: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) Qed DPs: b#(c(x1)) -> a#(x1) a#(a(x1)) -> b#(x1) TRS: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) Usable Rule Processor: DPs: b#(c(x1)) -> a#(x1) a#(a(x1)) -> b#(x1) TRS: Arctic Interpretation Processor: dimension: 2 usable rules: interpretation: [b#](x0) = [0 -&]x0, [a#](x0) = [0 0]x0, [0 0] [2] [c](x0) = [3 0]x0 + [0], [0 0] [0] [a](x0) = [3 2]x0 + [2] orientation: b#(c(x1)) = [0 0]x1 + [2] >= [0 0]x1 = a#(x1) a#(a(x1)) = [3 2]x1 + [2] >= [0 -&]x1 = b#(x1) problem: DPs: b#(c(x1)) -> a#(x1) TRS: Restore Modifier: DPs: b#(c(x1)) -> a#(x1) TRS: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) EDG Processor: DPs: b#(c(x1)) -> a#(x1) TRS: a(a(x1)) -> b(x1) b(c(x1)) -> a(x1) c(b(x1)) -> a(b(c(c(x1)))) graph: SCC Processor: #sccs: 0 #rules: 0 #arcs: 0/1