/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 1 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 1 0 0 | | 0 1 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 1 0 0 | | 0 1 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 1 0 0 | \ / Remains to prove termination of the 11-rule system { 0 5 4 -> 5 0 4 0 3 3 , 4 2 1 -> 4 0 2 1 , 4 2 1 -> 1 2 4 0 2 , 0 4 2 1 -> 0 4 3 0 2 1 , 1 4 2 1 -> 4 0 2 1 2 1 , 4 1 2 1 -> 4 1 0 2 1 , 4 1 2 1 -> 3 4 0 2 1 1 , 4 3 2 1 -> 0 3 4 0 2 1 , 1 4 2 1 2 -> 0 2 2 1 1 4 , 4 0 0 5 4 -> 5 0 0 4 4 5 , 4 2 5 4 1 -> 4 4 1 5 3 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 0 0 | \ / Remains to prove termination of the 9-rule system { 4 2 1 -> 4 0 2 1 , 4 2 1 -> 1 2 4 0 2 , 0 4 2 1 -> 0 4 3 0 2 1 , 1 4 2 1 -> 4 0 2 1 2 1 , 4 1 2 1 -> 4 1 0 2 1 , 4 1 2 1 -> 3 4 0 2 1 1 , 4 3 2 1 -> 0 3 4 0 2 1 , 1 4 2 1 2 -> 0 2 2 1 1 4 , 4 2 5 4 1 -> 4 4 1 5 3 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / Remains to prove termination of the 8-rule system { 4 2 1 -> 4 0 2 1 , 4 2 1 -> 1 2 4 0 2 , 1 4 2 1 -> 4 0 2 1 2 1 , 4 1 2 1 -> 4 1 0 2 1 , 4 1 2 1 -> 3 4 0 2 1 1 , 4 3 2 1 -> 0 3 4 0 2 1 , 1 4 2 1 2 -> 0 2 2 1 1 4 , 4 2 5 4 1 -> 4 4 1 5 3 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 1 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / Remains to prove termination of the 4-rule system { 4 1 2 1 -> 4 1 0 2 1 , 4 1 2 1 -> 3 4 0 2 1 1 , 4 3 2 1 -> 0 3 4 0 2 1 , 4 2 5 4 1 -> 4 4 1 5 3 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / Remains to prove termination of the 2-rule system { 4 3 2 1 -> 0 3 4 0 2 1 , 4 2 5 4 1 -> 4 4 1 5 3 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / Remains to prove termination of the 1-rule system { 4 2 5 4 1 -> 4 4 1 5 3 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / Remains to prove termination of the 0-rule system { } The system is trivially terminating.