/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x y) (RULES le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ) Problem 1: Valid CTRS Processor: -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true -> The system is a deterministic 3-CTRS. Problem 1: Dependency Pairs Processor: Conditional Termination Problem 1: -> Pairs: LE(s(x),s(y)) -> LE(x,y) SIZE(push(x,y)) -> SIZE(x) -> QPairs: Empty -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true Conditional Termination Problem 2: -> Pairs: POP(push(x,y)) -> LE(size(x),m) POP(push(x,y)) -> M POP(push(x,y)) -> SIZE(x) TOP(push(x,y)) -> LE(size(x),m) TOP(push(x,y)) -> M TOP(push(x,y)) -> SIZE(x) -> QPairs: LE(s(x),s(y)) -> LE(x,y) SIZE(push(x,y)) -> SIZE(x) -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true The problem is decomposed in 2 subproblems. Problem 1.1: SCC Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) SIZE(push(x,y)) -> SIZE(x) -> QPairs: Empty -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: SIZE(push(x,y)) -> SIZE(x) ->->-> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) ->->-> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true The problem is decomposed in 2 subproblems. Problem 1.1.1: Conditional Subterm Processor: -> Pairs: SIZE(push(x,y)) -> SIZE(x) -> QPairs: Empty -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ->Projection: pi(SIZE) = 1 Problem 1.1.1: SCC Processor: -> Pairs: Empty -> QPairs: Empty -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.1.2: Conditional Subterm Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> QPairs: Empty -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ->Projection: pi(LE) = 1 Problem 1.1.2: SCC Processor: -> Pairs: Empty -> QPairs: Empty -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: SCC Processor: -> Pairs: POP(push(x,y)) -> LE(size(x),m) POP(push(x,y)) -> M POP(push(x,y)) -> SIZE(x) TOP(push(x,y)) -> LE(size(x),m) TOP(push(x,y)) -> M TOP(push(x,y)) -> SIZE(x) -> QPairs: LE(s(x),s(y)) -> LE(x,y) SIZE(push(x,y)) -> SIZE(x) -> Rules: le(0,s(x)) -> true le(s(x),s(y)) -> le(x,y) le(x,0) -> false m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x,y)) -> x | le(size(x),m) -> true size(empty) -> 0 size(push(x,y)) -> s(size(x)) top(empty) -> eentry top(push(x,y)) -> y | le(size(x),m) -> true ->Strongly Connected Components: There is no strongly connected component The problem is finite.