/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 45 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) TransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QReductionProof [EQUIVALENT, 0 ms] (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 0 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 0 ms] (36) QDP (37) QDPOrderProof [EQUIVALENT, 0 ms] (38) QDP (39) PisEmptyProof [EQUIVALENT, 0 ms] (40) YES (41) QDP (42) UsableRulesProof [EQUIVALENT, 0 ms] (43) QDP (44) QReductionProof [EQUIVALENT, 0 ms] (45) QDP (46) QDPSizeChangeProof [EQUIVALENT, 0 ms] (47) YES (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) QReductionProof [EQUIVALENT, 0 ms] (52) QDP (53) QDPSizeChangeProof [EQUIVALENT, 0 ms] (54) YES (55) QDP (56) UsableRulesProof [EQUIVALENT, 0 ms] (57) QDP (58) QReductionProof [EQUIVALENT, 0 ms] (59) QDP (60) QDPOrderProof [EQUIVALENT, 17 ms] (61) QDP (62) QDPOrderProof [EQUIVALENT, 20 ms] (63) QDP (64) PisEmptyProof [EQUIVALENT, 0 ms] (65) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) HALF(s(s(x))) -> HALF(x) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(s(x), s(y)) -> IF(gt(x, y), x, y) PLUS(s(x), s(y)) -> GT(x, y) PLUS(s(x), s(y)) -> IF(not(gt(x, y)), id(x), id(y)) PLUS(s(x), s(y)) -> NOT(gt(x, y)) PLUS(s(x), s(y)) -> ID(x) PLUS(s(x), s(y)) -> ID(y) PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), x) -> IF(gt(x, x), id(x), id(x)) PLUS(s(x), x) -> GT(x, x) PLUS(s(x), x) -> ID(x) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) PLUS(id(x), s(y)) -> IF(gt(s(y), y), y, s(y)) PLUS(id(x), s(y)) -> GT(s(y), y) NOT(x) -> IF(x, false, true) GT(s(x), s(y)) -> GT(x, y) TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) TIMES(s(x), y) -> EVEN(s(x)) IF_TIMES(true, s(x), y) -> PLUS(times(half(s(x)), y), times(half(s(x)), y)) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(true, s(x), y) -> HALF(s(x)) IF_TIMES(false, s(x), y) -> PLUS(y, times(x, y)) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 17 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(x), s(y)) -> GT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) at position [0,1] we obtained the following new rules [LPAR04]: (PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)),PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x))) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) at position [1,0] we obtained the following new rules [LPAR04]: (PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))),PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y)))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. not(x0) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) at position [0,2] we obtained the following new rules [LPAR04]: (PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)),PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x))) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) at position [1,1] we obtained the following new rules [LPAR04]: (PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y))),PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y)))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y))) at position [1,2] we obtained the following new rules [LPAR04]: (PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)),PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y))) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. id(x0) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y The set Q consists of the following terms: if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(PLUS(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[-I]] + [[1A]] * x_1 >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[-I]] + [[3A]] * x_1 + [[-I]] * x_2 >>> <<< POL(false) = [[0A]] >>> <<< POL(true) = [[5A]] >>> <<< POL(zero) = [[2A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: if(true, x, y) -> x if(false, x, y) -> y ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y The set Q consists of the following terms: if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( PLUS_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} POL( if_3(x_1, ..., x_3) ) = x_2 + x_3 POL( gt_2(x_1, x_2) ) = 0 POL( s_1(x_1) ) = 2x_1 + 1 POL( zero ) = 0 POL( true ) = 0 POL( false ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: if(true, x, y) -> x if(false, x, y) -> y ---------------------------------------- (38) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y The set Q consists of the following terms: if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (40) YES ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(x))) -> HALF(x) The graph contains the following edges 1 > 1 ---------------------------------------- (47) YES ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EVEN(s(s(x))) -> EVEN(x) The graph contains the following edges 1 > 1 ---------------------------------------- (54) YES ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_TIMES(false, s(x), y) -> TIMES(x, y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_TIMES_3(x_1, ..., x_3) ) = max{0, x_1 + 2x_2 + x_3 - 2} POL( even_1(x_1) ) = 2 POL( s_1(x_1) ) = 2x_1 + 2 POL( 0 ) = 0 POL( false ) = 0 POL( TIMES_2(x_1, x_2) ) = 2x_1 + x_2 POL( half_1(x_1) ) = x_1 POL( true ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: even(s(0)) -> false even(s(s(x))) -> even(x) half(s(s(x))) -> s(half(x)) half(0) -> 0 even(0) -> true ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_TIMES_3(x_1, ..., x_3) ) = max{0, x_1 + 2x_2 + 2x_3 - 1} POL( even_1(x_1) ) = 1 POL( s_1(x_1) ) = 2x_1 + 2 POL( 0 ) = 0 POL( false ) = 1 POL( TIMES_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( half_1(x_1) ) = max{0, x_1 - 2} POL( true ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: even(s(0)) -> false even(s(s(x))) -> even(x) half(s(s(x))) -> s(half(x)) half(0) -> 0 even(0) -> true ---------------------------------------- (63) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (65) YES