/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) MRRProof [EQUIVALENT, 27 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 2 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 106 ms] (46) QDP (47) DependencyGraphProof [EQUIVALENT, 0 ms] (48) QDP (49) QDPOrderProof [EQUIVALENT, 0 ms] (50) QDP (51) PisEmptyProof [EQUIVALENT, 0 ms] (52) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(h(X)) -> G(X, X) ACTIVE(g(a, X)) -> MARK(f(b, X)) ACTIVE(g(a, X)) -> F(b, X) ACTIVE(f(X, X)) -> MARK(h(a)) ACTIVE(f(X, X)) -> H(a) ACTIVE(a) -> MARK(b) MARK(h(X)) -> ACTIVE(h(mark(X))) MARK(h(X)) -> H(mark(X)) MARK(h(X)) -> MARK(X) MARK(g(X1, X2)) -> ACTIVE(g(mark(X1), X2)) MARK(g(X1, X2)) -> G(mark(X1), X2) MARK(g(X1, X2)) -> MARK(X1) MARK(a) -> ACTIVE(a) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) MARK(f(X1, X2)) -> F(mark(X1), X2) MARK(f(X1, X2)) -> MARK(X1) MARK(b) -> ACTIVE(b) H(mark(X)) -> H(X) H(active(X)) -> H(X) G(mark(X1), X2) -> G(X1, X2) G(X1, mark(X2)) -> G(X1, X2) G(active(X1), X2) -> G(X1, X2) G(X1, active(X2)) -> G(X1, X2) F(mark(X1), X2) -> F(X1, X2) F(X1, mark(X2)) -> F(X1, X2) F(active(X1), X2) -> F(X1, X2) F(X1, active(X2)) -> F(X1, X2) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 9 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: F(X1, mark(X2)) -> F(X1, X2) F(mark(X1), X2) -> F(X1, X2) F(active(X1), X2) -> F(X1, X2) F(X1, active(X2)) -> F(X1, X2) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: F(X1, mark(X2)) -> F(X1, X2) F(mark(X1), X2) -> F(X1, X2) F(active(X1), X2) -> F(X1, X2) F(X1, active(X2)) -> F(X1, X2) R is empty. The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: F(X1, mark(X2)) -> F(X1, X2) F(mark(X1), X2) -> F(X1, X2) F(active(X1), X2) -> F(X1, X2) F(X1, active(X2)) -> F(X1, X2) R is empty. The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F(X1, mark(X2)) -> F(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *F(mark(X1), X2) -> F(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *F(active(X1), X2) -> F(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *F(X1, active(X2)) -> F(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: G(X1, mark(X2)) -> G(X1, X2) G(mark(X1), X2) -> G(X1, X2) G(active(X1), X2) -> G(X1, X2) G(X1, active(X2)) -> G(X1, X2) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: G(X1, mark(X2)) -> G(X1, X2) G(mark(X1), X2) -> G(X1, X2) G(active(X1), X2) -> G(X1, X2) G(X1, active(X2)) -> G(X1, X2) R is empty. The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: G(X1, mark(X2)) -> G(X1, X2) G(mark(X1), X2) -> G(X1, X2) G(active(X1), X2) -> G(X1, X2) G(X1, active(X2)) -> G(X1, X2) R is empty. The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *G(X1, mark(X2)) -> G(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *G(mark(X1), X2) -> G(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *G(active(X1), X2) -> G(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *G(X1, active(X2)) -> G(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: H(active(X)) -> H(X) H(mark(X)) -> H(X) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: H(active(X)) -> H(X) H(mark(X)) -> H(X) R is empty. The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: H(active(X)) -> H(X) H(mark(X)) -> H(X) R is empty. The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *H(active(X)) -> H(X) The graph contains the following edges 1 > 1 *H(mark(X)) -> H(X) The graph contains the following edges 1 > 1 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(g(X1, X2)) -> ACTIVE(g(mark(X1), X2)) ACTIVE(h(X)) -> MARK(g(X, X)) MARK(g(X1, X2)) -> MARK(X1) MARK(h(X)) -> ACTIVE(h(mark(X))) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(h(X)) -> MARK(X) MARK(f(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(g(X1, X2)) -> MARK(X1) MARK(h(X)) -> MARK(X) MARK(f(X1, X2)) -> MARK(X1) Used ordering: Polynomial interpretation [POLO]: POL(ACTIVE(x_1)) = 2*x_1 POL(MARK(x_1)) = 2*x_1 POL(a) = 0 POL(active(x_1)) = x_1 POL(b) = 0 POL(f(x_1, x_2)) = 2 + 2*x_1 + x_2 POL(g(x_1, x_2)) = 2 + x_1 + x_2 POL(h(x_1)) = 2 + 2*x_1 POL(mark(x_1)) = x_1 ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(g(X1, X2)) -> ACTIVE(g(mark(X1), X2)) ACTIVE(h(X)) -> MARK(g(X, X)) MARK(h(X)) -> ACTIVE(h(mark(X))) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule MARK(g(X1, X2)) -> ACTIVE(g(mark(X1), X2)) we obtained the following new rules [LPAR04]: (MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)),MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0))) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) MARK(h(X)) -> ACTIVE(h(mark(X))) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule MARK(h(X)) -> ACTIVE(h(mark(X))) we obtained the following new rules [LPAR04]: (MARK(h(a)) -> ACTIVE(h(mark(a))),MARK(h(a)) -> ACTIVE(h(mark(a)))) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(h(a)) -> ACTIVE(h(mark(a))) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule MARK(h(a)) -> ACTIVE(h(mark(a))) at position [0,0] we obtained the following new rules [LPAR04]: (MARK(h(a)) -> ACTIVE(h(active(a))),MARK(h(a)) -> ACTIVE(h(active(a)))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(h(a)) -> ACTIVE(h(active(a))) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule MARK(h(a)) -> ACTIVE(h(active(a))) at position [0,0] we obtained the following new rules [LPAR04]: (MARK(h(a)) -> ACTIVE(h(mark(b))),MARK(h(a)) -> ACTIVE(h(mark(b)))) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(h(a)) -> ACTIVE(h(mark(b))) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule MARK(h(a)) -> ACTIVE(h(mark(b))) at position [0,0] we obtained the following new rules [LPAR04]: (MARK(h(a)) -> ACTIVE(h(active(b))),MARK(h(a)) -> ACTIVE(h(active(b)))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(h(a)) -> ACTIVE(h(active(b))) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule MARK(h(a)) -> ACTIVE(h(active(b))) at position [0] we obtained the following new rules [LPAR04]: (MARK(h(a)) -> ACTIVE(h(b)),MARK(h(a)) -> ACTIVE(h(b))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(h(a)) -> ACTIVE(h(b)) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule MARK(f(X1, X2)) -> ACTIVE(f(mark(X1), X2)) we obtained the following new rules [LPAR04]: (MARK(f(b, z0)) -> ACTIVE(f(mark(b), z0)),MARK(f(b, z0)) -> ACTIVE(f(mark(b), z0))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(h(a)) -> ACTIVE(h(b)) MARK(f(b, z0)) -> ACTIVE(f(mark(b), z0)) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule MARK(f(b, z0)) -> ACTIVE(f(mark(b), z0)) at position [0,0] we obtained the following new rules [LPAR04]: (MARK(f(b, z0)) -> ACTIVE(f(active(b), z0)),MARK(f(b, z0)) -> ACTIVE(f(active(b), z0))) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(h(a)) -> ACTIVE(h(b)) MARK(f(b, z0)) -> ACTIVE(f(active(b), z0)) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(h(a)) -> ACTIVE(h(b)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = max{0, x_1 - 1} POL( g_2(x_1, x_2) ) = x_1 + 1 POL( mark_1(x_1) ) = x_1 POL( active_1(x_1) ) = x_1 POL( h_1(x_1) ) = x_1 + 1 POL( a ) = 1 POL( f_2(x_1, x_2) ) = 2 POL( b ) = 0 POL( MARK_1(x_1) ) = max{0, x_1 - 1} The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(g(X1, X2)) -> active(g(mark(X1), X2)) active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) mark(f(X1, X2)) -> active(f(mark(X1), X2)) active(f(X, X)) -> mark(h(a)) mark(h(X)) -> active(h(mark(X))) mark(a) -> active(a) mark(b) -> active(b) g(X1, mark(X2)) -> g(X1, X2) g(mark(X1), X2) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) active(a) -> mark(b) h(active(X)) -> h(X) h(mark(X)) -> h(X) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(h(X)) -> MARK(g(X, X)) ACTIVE(g(a, X)) -> MARK(f(b, X)) ACTIVE(f(X, X)) -> MARK(h(a)) MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) MARK(f(b, z0)) -> ACTIVE(f(active(b), z0)) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) ACTIVE(h(X)) -> MARK(g(X, X)) The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(g(z0, z0)) -> ACTIVE(g(mark(z0), z0)) ACTIVE(h(X)) -> MARK(g(X, X)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = MARK ACTIVE(x1) = x1 g(x1, x2) = g h(x1) = h Knuth-Bendix order [KBO] with precedence:MARK > g and weight map: MARK=1 h=2 g=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: g(X1, mark(X2)) -> g(X1, X2) g(mark(X1), X2) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) ---------------------------------------- (50) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: active(h(X)) -> mark(g(X, X)) active(g(a, X)) -> mark(f(b, X)) active(f(X, X)) -> mark(h(a)) active(a) -> mark(b) mark(h(X)) -> active(h(mark(X))) mark(g(X1, X2)) -> active(g(mark(X1), X2)) mark(a) -> active(a) mark(f(X1, X2)) -> active(f(mark(X1), X2)) mark(b) -> active(b) h(mark(X)) -> h(X) h(active(X)) -> h(X) g(mark(X1), X2) -> g(X1, X2) g(X1, mark(X2)) -> g(X1, X2) g(active(X1), X2) -> g(X1, X2) g(X1, active(X2)) -> g(X1, X2) f(mark(X1), X2) -> f(X1, X2) f(X1, mark(X2)) -> f(X1, X2) f(active(X1), X2) -> f(X1, X2) f(X1, active(X2)) -> f(X1, X2) The set Q consists of the following terms: active(h(x0)) active(g(a, x0)) active(f(x0, x0)) active(a) mark(h(x0)) mark(g(x0, x1)) mark(a) mark(f(x0, x1)) mark(b) h(mark(x0)) h(active(x0)) g(mark(x0), x1) g(x0, mark(x1)) g(active(x0), x1) g(x0, active(x1)) f(mark(x0), x1) f(x0, mark(x1)) f(active(x0), x1) f(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (52) YES