/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 41 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPSizeChangeProof [EQUIVALENT, 0 ms] (46) YES (47) QDP (48) UsableRulesProof [EQUIVALENT, 0 ms] (49) QDP (50) QReductionProof [EQUIVALENT, 0 ms] (51) QDP (52) QDPSizeChangeProof [EQUIVALENT, 0 ms] (53) YES (54) QDP (55) UsableRulesProof [EQUIVALENT, 0 ms] (56) QDP (57) QReductionProof [EQUIVALENT, 0 ms] (58) QDP (59) QDPSizeChangeProof [EQUIVALENT, 0 ms] (60) YES (61) QDP (62) QDPOrderProof [EQUIVALENT, 293 ms] (63) QDP (64) QDPOrderProof [EQUIVALENT, 275 ms] (65) QDP (66) UsableRulesProof [EQUIVALENT, 0 ms] (67) QDP (68) QReductionProof [EQUIVALENT, 0 ms] (69) QDP (70) QDPSizeChangeProof [EQUIVALENT, 0 ms] (71) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) ACTIVE(terms(N)) -> CONS(recip(sqr(N)), terms(s(N))) ACTIVE(terms(N)) -> RECIP(sqr(N)) ACTIVE(terms(N)) -> SQR(N) ACTIVE(terms(N)) -> TERMS(s(N)) ACTIVE(terms(N)) -> S(N) ACTIVE(sqr(0)) -> MARK(0) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) ACTIVE(sqr(s(X))) -> S(add(sqr(X), dbl(X))) ACTIVE(sqr(s(X))) -> ADD(sqr(X), dbl(X)) ACTIVE(sqr(s(X))) -> SQR(X) ACTIVE(sqr(s(X))) -> DBL(X) ACTIVE(dbl(0)) -> MARK(0) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) ACTIVE(dbl(s(X))) -> S(s(dbl(X))) ACTIVE(dbl(s(X))) -> S(dbl(X)) ACTIVE(dbl(s(X))) -> DBL(X) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(add(s(X), Y)) -> S(add(X, Y)) ACTIVE(add(s(X), Y)) -> ADD(X, Y) ACTIVE(first(0, X)) -> MARK(nil) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z)) ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> TERMS(mark(X)) MARK(terms(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(recip(X)) -> RECIP(mark(X)) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> SQR(mark(X)) MARK(sqr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(0) -> ACTIVE(0) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> DBL(mark(X)) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> FIRST(mark(X1), mark(X2)) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(nil) -> ACTIVE(nil) TERMS(mark(X)) -> TERMS(X) TERMS(active(X)) -> TERMS(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) RECIP(mark(X)) -> RECIP(X) RECIP(active(X)) -> RECIP(X) SQR(mark(X)) -> SQR(X) SQR(active(X)) -> SQR(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) DBL(mark(X)) -> DBL(X) DBL(active(X)) -> DBL(X) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 29 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FIRST(X1, mark(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *FIRST(mark(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(active(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(X1, active(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DBL(active(X)) -> DBL(X) The graph contains the following edges 1 > 1 *DBL(mark(X)) -> DBL(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(X1, mark(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *ADD(mark(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(active(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(X1, active(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SQR(active(X)) -> SQR(X) The graph contains the following edges 1 > 1 *SQR(mark(X)) -> SQR(X) The graph contains the following edges 1 > 1 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *RECIP(active(X)) -> RECIP(X) The graph contains the following edges 1 > 1 *RECIP(mark(X)) -> RECIP(X) The graph contains the following edges 1 > 1 ---------------------------------------- (46) YES ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (53) YES ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TERMS(active(X)) -> TERMS(X) The graph contains the following edges 1 > 1 *TERMS(mark(X)) -> TERMS(X) The graph contains the following edges 1 > 1 ---------------------------------------- (60) YES ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) MARK(s(X)) -> ACTIVE(s(mark(X))) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) MARK(s(X)) -> MARK(X) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> ACTIVE(recip(mark(X))) ACTIVE(add(0, X)) -> MARK(X) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(recip(X)) -> ACTIVE(recip(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = max{0, 2x_1 - 1} POL( add_2(x_1, x_2) ) = 1 POL( cons_2(x_1, x_2) ) = max{0, -2} POL( dbl_1(x_1) ) = 1 POL( first_2(x_1, x_2) ) = 1 POL( recip_1(x_1) ) = max{0, -2} POL( s_1(x_1) ) = max{0, -2} POL( sqr_1(x_1) ) = 1 POL( terms_1(x_1) ) = 1 POL( mark_1(x_1) ) = 0 POL( active_1(x_1) ) = 2 POL( 0 ) = 0 POL( nil ) = 0 POL( MARK_1(x_1) ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) ---------------------------------------- (63) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) MARK(s(X)) -> MARK(X) MARK(terms(X)) -> MARK(X) ACTIVE(add(0, X)) -> MARK(X) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) MARK(s(X)) -> MARK(X) MARK(terms(X)) -> MARK(X) ACTIVE(add(0, X)) -> MARK(X) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = x1 terms(x1) = terms(x1) MARK(x1) = MARK(x1) cons(x1, x2) = x1 recip(x1) = recip(x1) sqr(x1) = sqr(x1) s(x1) = s(x1) mark(x1) = x1 add(x1, x2) = add(x1, x2) dbl(x1) = dbl(x1) 0 = 0 first(x1, x2) = first(x1, x2) active(x1) = x1 nil = nil Recursive path order with status [RPO]. Quasi-Precedence: terms_1 > sqr_1 > add_2 > s_1 > [MARK_1, recip_1, 0] > nil terms_1 > sqr_1 > dbl_1 > s_1 > [MARK_1, recip_1, 0] > nil first_2 > [MARK_1, recip_1, 0] > nil Status: terms_1: [1] MARK_1: multiset status recip_1: multiset status sqr_1: [1] s_1: [1] add_2: multiset status dbl_1: [1] 0: multiset status first_2: [1,2] nil: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) mark(s(X)) -> active(s(mark(X))) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(dbl(0)) -> mark(0) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (67) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (68) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (69) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (70) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (71) YES