/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 56 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) QDPOrderProof [EQUIVALENT, 36 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 20 ms] (44) QDP (45) DependencyGraphProof [EQUIVALENT, 0 ms] (46) QDP (47) QDPOrderProof [EQUIVALENT, 21 ms] (48) QDP (49) QDPOrderProof [EQUIVALENT, 0 ms] (50) QDP (51) QDPOrderProof [EQUIVALENT, 14 ms] (52) QDP (53) QDPOrderProof [EQUIVALENT, 2 ms] (54) QDP (55) QDPOrderProof [EQUIVALENT, 23 ms] (56) QDP (57) UsableRulesProof [EQUIVALENT, 0 ms] (58) QDP (59) QReductionProof [EQUIVALENT, 0 ms] (60) QDP (61) QDPSizeChangeProof [EQUIVALENT, 0 ms] (62) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) ACTIVE(filter(cons(X, Y), 0, M)) -> CONS(0, filter(Y, M, M)) ACTIVE(filter(cons(X, Y), 0, M)) -> FILTER(Y, M, M) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) ACTIVE(filter(cons(X, Y), s(N), M)) -> CONS(X, filter(Y, N, M)) ACTIVE(filter(cons(X, Y), s(N), M)) -> FILTER(Y, N, M) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(0, Y))) -> CONS(0, sieve(Y)) ACTIVE(sieve(cons(0, Y))) -> SIEVE(Y) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) ACTIVE(sieve(cons(s(N), Y))) -> CONS(s(N), sieve(filter(Y, N, N))) ACTIVE(sieve(cons(s(N), Y))) -> SIEVE(filter(Y, N, N)) ACTIVE(sieve(cons(s(N), Y))) -> FILTER(Y, N, N) ACTIVE(nats(N)) -> MARK(cons(N, nats(s(N)))) ACTIVE(nats(N)) -> CONS(N, nats(s(N))) ACTIVE(nats(N)) -> NATS(s(N)) ACTIVE(nats(N)) -> S(N) ACTIVE(zprimes) -> MARK(sieve(nats(s(s(0))))) ACTIVE(zprimes) -> SIEVE(nats(s(s(0)))) ACTIVE(zprimes) -> NATS(s(s(0))) ACTIVE(zprimes) -> S(s(0)) ACTIVE(zprimes) -> S(0) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) MARK(filter(X1, X2, X3)) -> FILTER(mark(X1), mark(X2), mark(X3)) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(0) -> ACTIVE(0) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> SIEVE(mark(X)) MARK(sieve(X)) -> MARK(X) MARK(nats(X)) -> ACTIVE(nats(mark(X))) MARK(nats(X)) -> NATS(mark(X)) MARK(nats(X)) -> MARK(X) MARK(zprimes) -> ACTIVE(zprimes) FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3) FILTER(active(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, active(X2), X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, active(X3)) -> FILTER(X1, X2, X3) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) SIEVE(mark(X)) -> SIEVE(X) SIEVE(active(X)) -> SIEVE(X) NATS(mark(X)) -> NATS(X) NATS(active(X)) -> NATS(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 22 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(active(X)) -> NATS(X) NATS(mark(X)) -> NATS(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(active(X)) -> NATS(X) NATS(mark(X)) -> NATS(X) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(active(X)) -> NATS(X) NATS(mark(X)) -> NATS(X) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *NATS(active(X)) -> NATS(X) The graph contains the following edges 1 > 1 *NATS(mark(X)) -> NATS(X) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: SIEVE(active(X)) -> SIEVE(X) SIEVE(mark(X)) -> SIEVE(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: SIEVE(active(X)) -> SIEVE(X) SIEVE(mark(X)) -> SIEVE(X) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: SIEVE(active(X)) -> SIEVE(X) SIEVE(mark(X)) -> SIEVE(X) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SIEVE(active(X)) -> SIEVE(X) The graph contains the following edges 1 > 1 *SIEVE(mark(X)) -> SIEVE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3) FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3) FILTER(active(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, active(X2), X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, active(X3)) -> FILTER(X1, X2, X3) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3) FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3) FILTER(active(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, active(X2), X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, active(X3)) -> FILTER(X1, X2, X3) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3) FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3) FILTER(active(X1), X2, X3) -> FILTER(X1, X2, X3) FILTER(X1, active(X2), X3) -> FILTER(X1, X2, X3) FILTER(X1, X2, active(X3)) -> FILTER(X1, X2, X3) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 *FILTER(active(X1), X2, X3) -> FILTER(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *FILTER(X1, active(X2), X3) -> FILTER(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *FILTER(X1, X2, active(X3)) -> FILTER(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) ACTIVE(nats(N)) -> MARK(cons(N, nats(s(N)))) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) MARK(nats(X)) -> ACTIVE(nats(mark(X))) MARK(nats(X)) -> MARK(X) MARK(zprimes) -> ACTIVE(zprimes) ACTIVE(zprimes) -> MARK(sieve(nats(s(s(0))))) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(s(X)) -> ACTIVE(s(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 1 POL(active(x_1)) = 0 POL(cons(x_1, x_2)) = 0 POL(filter(x_1, x_2, x_3)) = 1 POL(mark(x_1)) = 0 POL(nats(x_1)) = 1 POL(s(x_1)) = 0 POL(sieve(x_1)) = 1 POL(zprimes) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) s(active(X)) -> s(X) s(mark(X)) -> s(X) sieve(active(X)) -> sieve(X) sieve(mark(X)) -> sieve(X) nats(active(X)) -> nats(X) nats(mark(X)) -> nats(X) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) ACTIVE(nats(N)) -> MARK(cons(N, nats(s(N)))) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) MARK(nats(X)) -> ACTIVE(nats(mark(X))) MARK(nats(X)) -> MARK(X) MARK(zprimes) -> ACTIVE(zprimes) ACTIVE(zprimes) -> MARK(sieve(nats(s(s(0))))) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(zprimes) -> MARK(sieve(nats(s(s(0))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 POL(filter(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(nats(x_1)) = x_1 POL(s(x_1)) = x_1 POL(sieve(x_1)) = x_1 POL(zprimes) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(sieve(X)) -> active(sieve(mark(X))) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) sieve(active(X)) -> sieve(X) sieve(mark(X)) -> sieve(X) nats(active(X)) -> nats(X) nats(mark(X)) -> nats(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) ACTIVE(nats(N)) -> MARK(cons(N, nats(s(N)))) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) MARK(nats(X)) -> ACTIVE(nats(mark(X))) MARK(nats(X)) -> MARK(X) MARK(zprimes) -> ACTIVE(zprimes) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) ACTIVE(nats(N)) -> MARK(cons(N, nats(s(N)))) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) MARK(nats(X)) -> ACTIVE(nats(mark(X))) MARK(nats(X)) -> MARK(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(nats(N)) -> MARK(cons(N, nats(s(N)))) MARK(nats(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 POL(filter(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(nats(x_1)) = 1 + x_1 POL(s(x_1)) = x_1 POL(sieve(x_1)) = x_1 POL(zprimes) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(sieve(X)) -> active(sieve(mark(X))) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) sieve(active(X)) -> sieve(X) sieve(mark(X)) -> sieve(X) nats(active(X)) -> nats(X) nats(mark(X)) -> nats(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) MARK(nats(X)) -> ACTIVE(nats(mark(X))) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(nats(X)) -> ACTIVE(nats(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 1 POL(active(x_1)) = 0 POL(cons(x_1, x_2)) = 0 POL(filter(x_1, x_2, x_3)) = 1 POL(mark(x_1)) = 0 POL(nats(x_1)) = 0 POL(s(x_1)) = 0 POL(sieve(x_1)) = 1 POL(zprimes) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) sieve(active(X)) -> sieve(X) sieve(mark(X)) -> sieve(X) nats(active(X)) -> nats(X) nats(mark(X)) -> nats(X) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(filter(cons(X, Y), 0, M)) -> MARK(cons(0, filter(Y, M, M))) ACTIVE(filter(cons(X, Y), s(N), M)) -> MARK(cons(X, filter(Y, N, M))) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 POL(filter(x_1, x_2, x_3)) = 1 + x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(nats(x_1)) = x_1 POL(s(x_1)) = x_1 POL(sieve(x_1)) = x_1 POL(zprimes) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(sieve(X)) -> active(sieve(mark(X))) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) sieve(active(X)) -> sieve(X) sieve(mark(X)) -> sieve(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) nats(active(X)) -> nats(X) nats(mark(X)) -> nats(X) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 filter(x1, x2, x3) = x1 ACTIVE(x1) = x1 mark(x1) = x1 sieve(x1) = x1 0 = 0 s(x1) = s(x1) active(x1) = x1 nats(x1) = x1 zprimes = zprimes Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 0=1 zprimes=4 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(sieve(X)) -> active(sieve(mark(X))) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) sieve(active(X)) -> sieve(X) sieve(mark(X)) -> sieve(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) nats(active(X)) -> nats(X) nats(mark(X)) -> nats(X) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(filter(X1, X2, X3)) -> ACTIVE(filter(mark(X1), mark(X2), mark(X3))) ACTIVE(sieve(cons(0, Y))) -> MARK(cons(0, sieve(Y))) ACTIVE(sieve(cons(s(N), Y))) -> MARK(cons(s(N), sieve(filter(Y, N, N)))) MARK(sieve(X)) -> ACTIVE(sieve(mark(X))) MARK(sieve(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 filter(x1, x2, x3) = filter ACTIVE(x1) = ACTIVE 0 = 0 s(x1) = s sieve(x1) = sieve(x1) mark(x1) = x1 active(x1) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=1 0=2 filter=4 ACTIVE=3 sieve_1=3 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) mark(filter(X1, X2, X3)) -> active(filter(mark(X1), mark(X2), mark(X3))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes) -> active(zprimes) filter(mark(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, mark(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, mark(X3)) -> filter(X1, X2, X3) filter(active(X1), X2, X3) -> filter(X1, X2, X3) filter(X1, active(X2), X3) -> filter(X1, X2, X3) filter(X1, X2, active(X3)) -> filter(X1, X2, X3) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(filter(cons(x0, x1), 0, x2)) active(filter(cons(x0, x1), s(x2), x3)) active(sieve(cons(0, x0))) active(sieve(cons(s(x0), x1))) active(nats(x0)) active(zprimes) mark(filter(x0, x1, x2)) mark(cons(x0, x1)) mark(0) mark(s(x0)) mark(sieve(x0)) mark(nats(x0)) mark(zprimes) filter(mark(x0), x1, x2) filter(x0, mark(x1), x2) filter(x0, x1, mark(x2)) filter(active(x0), x1, x2) filter(x0, active(x1), x2) filter(x0, x1, active(x2)) s(mark(x0)) s(active(x0)) sieve(mark(x0)) sieve(active(x0)) nats(mark(x0)) nats(active(x0)) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (62) YES