/export/starexec/sandbox/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: cons : [nat * list] --> list map : [nat -> nat * list] --> list merge : [list * list * list] --> list nil : [] --> list Rules: merge(nil, nil, x) => x merge(nil, cons(x, y), z) => merge(y, nil, cons(x, z)) merge(cons(x, y), z, u) => merge(z, y, cons(x, u)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): merge(nil, nil, X) >? X merge(nil, cons(X, Y), Z) >? merge(Y, nil, cons(X, Z)) merge(cons(X, Y), Z, U) >? merge(Z, Y, cons(X, U)) map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.1 + y0 + y1 map = \G0y1.3y1 + G0(0) + 2y1G0(y1) merge = \y0y1y2.3 + y0 + y1 + y2 nil = 2 Using this interpretation, the requirements translate to: [[merge(nil, nil, _x0)]] = 7 + x0 > x0 = [[_x0]] [[merge(nil, cons(_x0, _x1), _x2)]] = 6 + x0 + x1 + x2 >= 6 + x0 + x1 + x2 = [[merge(_x1, nil, cons(_x0, _x2))]] [[merge(cons(_x0, _x1), _x2, _x3)]] = 4 + x0 + x1 + x2 + x3 >= 4 + x0 + x1 + x2 + x3 = [[merge(_x2, _x1, cons(_x0, _x3))]] [[map(_F0, nil)]] = 6 + F0(0) + 4F0(2) > 2 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 3 + 3x1 + 3x2 + F0(0) + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > 1 + x1 + 3x2 + F0(0) + F0(x1) + 2x2F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] We can thus remove the following rules: merge(nil, nil, X) => X map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): merge(nil, cons(X, Y), Z) >? merge(Y, nil, cons(X, Z)) merge(cons(X, Y), Z, U) >? merge(Z, Y, cons(X, U)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.3 + y1 + 3y0 merge = \y0y1y2.2y2 + 3y0 + 3y1 nil = 0 Using this interpretation, the requirements translate to: [[merge(nil, cons(_x0, _x1), _x2)]] = 9 + 2x2 + 3x1 + 9x0 > 6 + 2x2 + 3x1 + 6x0 = [[merge(_x1, nil, cons(_x0, _x2))]] [[merge(cons(_x0, _x1), _x2, _x3)]] = 9 + 2x3 + 3x1 + 3x2 + 9x0 > 6 + 2x3 + 3x1 + 3x2 + 6x0 = [[merge(_x2, _x1, cons(_x0, _x3))]] We can thus remove the following rules: merge(nil, cons(X, Y), Z) => merge(Y, nil, cons(X, Z)) merge(cons(X, Y), Z, U) => merge(Z, Y, cons(X, U)) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.