/export/starexec/sandbox/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: app : [list * list] --> list cons : [nat * list] --> list map : [nat -> nat * list] --> list nil : [] --> list reverse : [list] --> list shuffle : [list] --> list Rules: app(nil, x) => x app(cons(x, y), z) => cons(x, app(y, z)) reverse(nil) => nil reverse(cons(x, y)) => app(reverse(y), cons(x, nil)) shuffle(nil) => nil shuffle(cons(x, y)) => cons(x, shuffle(reverse(y))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): app(nil, X) >? X app(cons(X, Y), Z) >? cons(X, app(Y, Z)) reverse(nil) >? nil reverse(cons(X, Y)) >? app(reverse(Y), cons(X, nil)) shuffle(nil) >? nil shuffle(cons(X, Y)) >? cons(X, shuffle(reverse(Y))) map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.y0 + y1 cons = \y0y1.2 + y0 + y1 map = \G0y1.3y1 + G0(0) + 2y1G0(y1) nil = 0 reverse = \y0.y0 shuffle = \y0.2 + y0 Using this interpretation, the requirements translate to: [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 2 + x0 + x1 + x2 >= 2 + x0 + x1 + x2 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 0 >= 0 = [[nil]] [[reverse(cons(_x0, _x1))]] = 2 + x0 + x1 >= 2 + x0 + x1 = [[app(reverse(_x1), cons(_x0, nil))]] [[shuffle(nil)]] = 2 > 0 = [[nil]] [[shuffle(cons(_x0, _x1))]] = 4 + x0 + x1 >= 4 + x0 + x1 = [[cons(_x0, shuffle(reverse(_x1)))]] [[map(_F0, nil)]] = F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 6 + 3x1 + 3x2 + F0(0) + 2x1F0(2 + x1 + x2) + 2x2F0(2 + x1 + x2) + 4F0(2 + x1 + x2) > 2 + x1 + 3x2 + F0(0) + F0(x1) + 2x2F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] We can thus remove the following rules: shuffle(nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): app(nil, X) >? X app(cons(X, Y), Z) >? cons(X, app(Y, Z)) reverse(nil) >? nil reverse(cons(X, Y)) >? app(reverse(Y), cons(X, nil)) shuffle(cons(X, Y)) >? cons(X, shuffle(reverse(Y))) map(F, nil) >? nil We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.y0 + y1 cons = \y0y1.1 + y1 + 2y0 map = \G0y1.3 + 3y1 + G0(0) nil = 0 reverse = \y0.y0 shuffle = \y0.2y0 Using this interpretation, the requirements translate to: [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 1 + x1 + x2 + 2x0 >= 1 + x1 + x2 + 2x0 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 0 >= 0 = [[nil]] [[reverse(cons(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[app(reverse(_x1), cons(_x0, nil))]] [[shuffle(cons(_x0, _x1))]] = 2 + 2x1 + 4x0 > 1 + 2x0 + 2x1 = [[cons(_x0, shuffle(reverse(_x1)))]] [[map(_F0, nil)]] = 3 + F0(0) > 0 = [[nil]] We can thus remove the following rules: shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) map(F, nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): app(nil, X) >? X app(cons(X, Y), Z) >? cons(X, app(Y, Z)) reverse(nil) >? nil reverse(cons(X, Y)) >? app(reverse(Y), cons(X, nil)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.2 + y0 + y1 cons = \y0y1.3 + y1 + 3y0 nil = 1 reverse = \y0.1 + 3y0 Using this interpretation, the requirements translate to: [[app(nil, _x0)]] = 3 + x0 > x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 5 + x1 + x2 + 3x0 >= 5 + x1 + x2 + 3x0 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 4 > 1 = [[nil]] [[reverse(cons(_x0, _x1))]] = 10 + 3x1 + 9x0 > 7 + 3x0 + 3x1 = [[app(reverse(_x1), cons(_x0, nil))]] We can thus remove the following rules: app(nil, X) => X reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): app(cons(X, Y), Z) >? cons(X, app(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.y1 + 3y0 cons = \y0y1.1 + y0 + y1 Using this interpretation, the requirements translate to: [[app(cons(_x0, _x1), _x2)]] = 3 + x2 + 3x0 + 3x1 > 1 + x0 + x2 + 3x1 = [[cons(_x0, app(_x1, _x2))]] We can thus remove the following rules: app(cons(X, Y), Z) => cons(X, app(Y, Z)) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.