/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE We consider the system theBenchmark. Alphabet: 0 : [] --> N false : [] --> B g : [] --> N -> B h : [] --> N -> N -> B -> N -> B iszero : [] --> N -> N -> B rec : [] --> N -> N -> B -> N -> B -> B -> N -> B s : [] --> N -> N true : [] --> B Rules: rec f (i 0) => i rec f (i (s x)) => f x (rec f (i x)) g x => true h x f y => false iszero x y => rec h (g x) y Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: Alphabet: 0 : [] --> N false : [] --> B g : [] --> N -> B h : [] --> N -> N -> B -> N -> B iszero : [N] --> N -> B rec : [N -> N -> B -> N -> B * B] --> N -> B s : [N] --> N true : [] --> B ~AP1 : [N -> B * N] --> B Rules: rec(F, ~AP1(G, 0)) => G rec(F, ~AP1(G, s(X))) => F X rec(F, ~AP1(G, X)) g X => true h X F Y => false iszero(X) Y => rec(h, g X) Y rec(F, g 0) => g rec(F, h X G 0) => h X G rec(F, iszero(X) 0) => iszero(X) rec(F, rec(G, X) 0) => rec(G, X) rec(F, g s(X)) => F X rec(F, g X) rec(F, h X G s(Y)) => F Y rec(F, h X G Y) rec(F, iszero(X) s(Y)) => F Y rec(F, iszero(X) Y) rec(F, rec(G, X) s(Y)) => F Y rec(F, rec(G, X) Y) ~AP1(F, X) => F X +++ Citations +++ [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011.