/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: and : [c * c] --> c cons : [a * b] --> b false : [] --> c forall : [a -> c * b] --> c forsome : [a -> c * b] --> c nil : [] --> b or : [c * c] --> c true : [] --> c Rules: and(true, true) => true and(x, false) => false and(false, x) => false or(true, x) => true or(x, true) => true or(false, false) => false forall(f, nil) => true forall(f, cons(x, y)) => and(f x, forall(f, y)) forsome(f, nil) => false forsome(f, cons(x, y)) => or(f x, forsome(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): and(true, true) >? true and(X, false) >? false and(false, X) >? false or(true, X) >? true or(X, true) >? true or(false, false) >? false forall(F, nil) >? true forall(F, cons(X, Y)) >? and(F X, forall(F, Y)) forsome(F, nil) >? false forsome(F, cons(X, Y)) >? or(F X, forsome(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: and = \y0y1.1 + y0 + y1 cons = \y0y1.3 + 3y0 + 3y1 false = 0 forall = \G0y1.3y1 + 2G0(y1) + 3y1G0(y1) forsome = \G0y1.3y1 + G0(0) + 3y1G0(y1) + 3G0(y1) nil = 3 or = \y0y1.y1 + 2y0 true = 0 Using this interpretation, the requirements translate to: [[and(true, true)]] = 1 > 0 = [[true]] [[and(_x0, false)]] = 1 + x0 > 0 = [[false]] [[and(false, _x0)]] = 1 + x0 > 0 = [[false]] [[or(true, _x0)]] = x0 >= 0 = [[true]] [[or(_x0, true)]] = 2x0 >= 0 = [[true]] [[or(false, false)]] = 0 >= 0 = [[false]] [[forall(_F0, nil)]] = 9 + 11F0(3) > 0 = [[true]] [[forall(_F0, cons(_x1, _x2))]] = 9 + 9x1 + 9x2 + 9x1F0(3 + 3x1 + 3x2) + 9x2F0(3 + 3x1 + 3x2) + 11F0(3 + 3x1 + 3x2) > 1 + x1 + 3x2 + F0(x1) + 2F0(x2) + 3x2F0(x2) = [[and(_F0 _x1, forall(_F0, _x2))]] [[forsome(_F0, nil)]] = 9 + F0(0) + 12F0(3) > 0 = [[false]] [[forsome(_F0, cons(_x1, _x2))]] = 9 + 9x1 + 9x2 + F0(0) + 9x1F0(3 + 3x1 + 3x2) + 9x2F0(3 + 3x1 + 3x2) + 12F0(3 + 3x1 + 3x2) > 2x1 + 3x2 + F0(0) + 2F0(x1) + 3x2F0(x2) + 3F0(x2) = [[or(_F0 _x1, forsome(_F0, _x2))]] We can thus remove the following rules: and(true, true) => true and(X, false) => false and(false, X) => false forall(F, nil) => true forall(F, cons(X, Y)) => and(F X, forall(F, Y)) forsome(F, nil) => false forsome(F, cons(X, Y)) => or(F X, forsome(F, Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): or(true, X) >? true or(X, true) >? true or(false, false) >? false We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: false = 0 or = \y0y1.3 + 3y0 + 3y1 true = 0 Using this interpretation, the requirements translate to: [[or(true, _x0)]] = 3 + 3x0 > 0 = [[true]] [[or(_x0, true)]] = 3 + 3x0 > 0 = [[true]] [[or(false, false)]] = 3 > 0 = [[false]] We can thus remove the following rules: or(true, X) => true or(X, true) => true or(false, false) => false All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.