/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: and : [form * form] --> form exists : [form -> form] --> form forall : [form -> form] --> form not : [form] --> form or : [form * form] --> form Rules: and(x, forall(/\y.f y)) => forall(/\z.and(x, f z)) or(x, forall(/\y.f y)) => forall(/\z.or(x, f z)) and(forall(/\x.f x), y) => forall(/\z.and(f z, y)) or(forall(/\x.f x), y) => forall(/\z.or(f z, y)) not(forall(/\x.f x)) => exists(/\y.not(f y)) and(x, exists(/\y.f y)) => exists(/\z.and(x, f z)) or(x, exists(/\y.f y)) => exists(/\z.or(x, f z)) and(exists(/\x.f x), y) => exists(/\z.and(f z, y)) or(exists(/\x.f x), y) => exists(/\z.or(f z, y)) not(exists(/\x.f x)) => forall(/\y.not(f y)) Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: Alphabet: and : [form * form] --> form exists : [form -> form] --> form forall : [form -> form] --> form not : [form] --> form or : [form * form] --> form ~AP1 : [form -> form * form] --> form Rules: and(X, forall(/\x.~AP1(F, x))) => forall(/\y.and(X, ~AP1(F, y))) or(X, forall(/\x.~AP1(F, x))) => forall(/\y.or(X, ~AP1(F, y))) and(forall(/\x.~AP1(F, x)), X) => forall(/\y.and(~AP1(F, y), X)) or(forall(/\x.~AP1(F, x)), X) => forall(/\y.or(~AP1(F, y), X)) not(forall(/\x.~AP1(F, x))) => exists(/\y.not(~AP1(F, y))) and(X, exists(/\x.~AP1(F, x))) => exists(/\y.and(X, ~AP1(F, y))) or(X, exists(/\x.~AP1(F, x))) => exists(/\y.or(X, ~AP1(F, y))) and(exists(/\x.~AP1(F, x)), X) => exists(/\y.and(~AP1(F, y), X)) or(exists(/\x.~AP1(F, x)), X) => exists(/\y.or(~AP1(F, y), X)) not(exists(/\x.~AP1(F, x))) => forall(/\y.not(~AP1(F, y))) ~AP1(F, X) => F X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): and(X, forall(/\x.~AP1(F, x))) >? forall(/\y.and(X, ~AP1(F, y))) or(X, forall(/\x.~AP1(F, x))) >? forall(/\y.or(X, ~AP1(F, y))) and(forall(/\x.~AP1(F, x)), X) >? forall(/\y.and(~AP1(F, y), X)) or(forall(/\x.~AP1(F, x)), X) >? forall(/\y.or(~AP1(F, y), X)) not(forall(/\x.~AP1(F, x))) >? exists(/\y.not(~AP1(F, y))) and(X, exists(/\x.~AP1(F, x))) >? exists(/\y.and(X, ~AP1(F, y))) or(X, exists(/\x.~AP1(F, x))) >? exists(/\y.or(X, ~AP1(F, y))) and(exists(/\x.~AP1(F, x)), X) >? exists(/\y.and(~AP1(F, y), X)) or(exists(/\x.~AP1(F, x)), X) >? exists(/\y.or(~AP1(F, y), X)) not(exists(/\x.~AP1(F, x))) >? forall(/\y.not(~AP1(F, y))) ~AP1(F, X) >? F X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: and = \y0y1.y0 + 2y1 exists = \G0.2 + G0(0) forall = \G0.2 + G0(0) not = \y0.2 + y0 or = \y0y1.y0 + 2y1 ~AP1 = \G0y1.2y1 + G0(y1) Using this interpretation, the requirements translate to: [[and(_x0, forall(/\x.~AP1(_F1, x)))]] = 4 + x0 + 2F1(0) > 2 + x0 + 2F1(0) = [[forall(/\x.and(_x0, ~AP1(_F1, x)))]] [[or(_x0, forall(/\x.~AP1(_F1, x)))]] = 4 + x0 + 2F1(0) > 2 + x0 + 2F1(0) = [[forall(/\x.or(_x0, ~AP1(_F1, x)))]] [[and(forall(/\x.~AP1(_F0, x)), _x1)]] = 2 + 2x1 + F0(0) >= 2 + 2x1 + F0(0) = [[forall(/\x.and(~AP1(_F0, x), _x1))]] [[or(forall(/\x.~AP1(_F0, x)), _x1)]] = 2 + 2x1 + F0(0) >= 2 + 2x1 + F0(0) = [[forall(/\x.or(~AP1(_F0, x), _x1))]] [[not(forall(/\x.~AP1(_F0, x)))]] = 4 + F0(0) >= 4 + F0(0) = [[exists(/\x.not(~AP1(_F0, x)))]] [[and(_x0, exists(/\x.~AP1(_F1, x)))]] = 4 + x0 + 2F1(0) > 2 + x0 + 2F1(0) = [[exists(/\x.and(_x0, ~AP1(_F1, x)))]] [[or(_x0, exists(/\x.~AP1(_F1, x)))]] = 4 + x0 + 2F1(0) > 2 + x0 + 2F1(0) = [[exists(/\x.or(_x0, ~AP1(_F1, x)))]] [[and(exists(/\x.~AP1(_F0, x)), _x1)]] = 2 + 2x1 + F0(0) >= 2 + 2x1 + F0(0) = [[exists(/\x.and(~AP1(_F0, x), _x1))]] [[or(exists(/\x.~AP1(_F0, x)), _x1)]] = 2 + 2x1 + F0(0) >= 2 + 2x1 + F0(0) = [[exists(/\x.or(~AP1(_F0, x), _x1))]] [[not(exists(/\x.~AP1(_F0, x)))]] = 4 + F0(0) >= 4 + F0(0) = [[forall(/\x.not(~AP1(_F0, x)))]] [[~AP1(_F0, _x1)]] = 2x1 + F0(x1) >= x1 + F0(x1) = [[_F0 _x1]] We can thus remove the following rules: and(X, forall(/\x.~AP1(F, x))) => forall(/\y.and(X, ~AP1(F, y))) or(X, forall(/\x.~AP1(F, x))) => forall(/\y.or(X, ~AP1(F, y))) and(X, exists(/\x.~AP1(F, x))) => exists(/\y.and(X, ~AP1(F, y))) or(X, exists(/\x.~AP1(F, x))) => exists(/\y.or(X, ~AP1(F, y))) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): and(forall(/\x.~AP1(F, x)), X) >? forall(/\y.and(~AP1(F, y), X)) or(forall(/\x.~AP1(F, x)), X) >? forall(/\y.or(~AP1(F, y), X)) not(forall(/\x.~AP1(F, x))) >? exists(/\y.not(~AP1(F, y))) and(exists(/\x.~AP1(F, x)), X) >? exists(/\y.and(~AP1(F, y), X)) or(exists(/\x.~AP1(F, x)), X) >? exists(/\y.or(~AP1(F, y), X)) not(exists(/\x.~AP1(F, x))) >? forall(/\y.not(~AP1(F, y))) ~AP1(F, X) >? F X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: and = \y0y1.2 + y1 + 3y0 exists = \G0.3 + G0(0) forall = \G0.3 + G0(0) not = \y0.3y0 or = \y0y1.2 + y1 + 3y0 ~AP1 = \G0y1.3 + y1 + G0(y1) Using this interpretation, the requirements translate to: [[and(forall(/\x.~AP1(_F0, x)), _x1)]] = 20 + x1 + 3F0(0) > 14 + x1 + 3F0(0) = [[forall(/\x.and(~AP1(_F0, x), _x1))]] [[or(forall(/\x.~AP1(_F0, x)), _x1)]] = 20 + x1 + 3F0(0) > 14 + x1 + 3F0(0) = [[forall(/\x.or(~AP1(_F0, x), _x1))]] [[not(forall(/\x.~AP1(_F0, x)))]] = 18 + 3F0(0) > 12 + 3F0(0) = [[exists(/\x.not(~AP1(_F0, x)))]] [[and(exists(/\x.~AP1(_F0, x)), _x1)]] = 20 + x1 + 3F0(0) > 14 + x1 + 3F0(0) = [[exists(/\x.and(~AP1(_F0, x), _x1))]] [[or(exists(/\x.~AP1(_F0, x)), _x1)]] = 20 + x1 + 3F0(0) > 14 + x1 + 3F0(0) = [[exists(/\x.or(~AP1(_F0, x), _x1))]] [[not(exists(/\x.~AP1(_F0, x)))]] = 18 + 3F0(0) > 12 + 3F0(0) = [[forall(/\x.not(~AP1(_F0, x)))]] [[~AP1(_F0, _x1)]] = 3 + x1 + F0(x1) > x1 + F0(x1) = [[_F0 _x1]] We can thus remove the following rules: and(forall(/\x.~AP1(F, x)), X) => forall(/\y.and(~AP1(F, y), X)) or(forall(/\x.~AP1(F, x)), X) => forall(/\y.or(~AP1(F, y), X)) not(forall(/\x.~AP1(F, x))) => exists(/\y.not(~AP1(F, y))) and(exists(/\x.~AP1(F, x)), X) => exists(/\y.and(~AP1(F, y), X)) or(exists(/\x.~AP1(F, x)), X) => exists(/\y.or(~AP1(F, y), X)) not(exists(/\x.~AP1(F, x))) => forall(/\y.not(~AP1(F, y))) ~AP1(F, X) => F X All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.